Answer
Verified
429.3k+ views
Hint:The distribution of toys are given in such a way that the toys of number 9 should be divided into the 4 children with three having even numbers of toys and one having three, meaning the number of toys given are in order of 2, 2, 2, 3. Hence, the combination should be done according to the toys divided into the three children in a formula of:
\[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\dfrac{\left[
\text{Toys amongst even children} \right]!}{{{\left[ \text{Number of toys amongst even numbers!}
\right]}^{\text{number of eldest}}}}\]
Complete step by step solution:
According to the question given, the toys are divided amongst the eldest in the same number but one extra is given to the youngest, now the total number of toys are given as \[9\].
So dividing the number of toys in terms of the number as given in the question as \[2,2,2,3\].
The total number of toys amongst the eldest are divided is \[2+2+2=6\].
Keeping the six places of the toys for the eldest separate, the youngest will get the total number of toys in a combination as:
\[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\]
Placing the values in the above formula we get the value of the combination as:
\[\Rightarrow {}^{9}{{C}_{\text{3}}}\]
Now the toys that were separated can be distributed in combinations of \[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\dfrac{\left[ \text{Toys amongst even children}
\right]!}{{{\left[ \text{Number of toys amongst even numbers!} \right]}^{\text{number of eldest}}}}\]
In which placing the values in the above formula, we get the combination as:
\[\Rightarrow {}^{9}{{C}_{\text{3}}}\dfrac{6!}{{{\left( 2! \right)}^{3}}}\]
This can be written as in another form which is:
\[\Rightarrow \dfrac{9!}{3!{{\left( 2! \right)}^{3}}}\]
Therefore, the total number of ways in which the toys can be distributed is given as \[\dfrac{9!}{3!{{\left(
2! \right)}^{3}}}\].
Note:
We use the method of combination here because in combination, the method is used to select elements from a collection of various other elements whereas in permutation, the method is used to arrange the elements in total.
\[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\dfrac{\left[
\text{Toys amongst even children} \right]!}{{{\left[ \text{Number of toys amongst even numbers!}
\right]}^{\text{number of eldest}}}}\]
Complete step by step solution:
According to the question given, the toys are divided amongst the eldest in the same number but one extra is given to the youngest, now the total number of toys are given as \[9\].
So dividing the number of toys in terms of the number as given in the question as \[2,2,2,3\].
The total number of toys amongst the eldest are divided is \[2+2+2=6\].
Keeping the six places of the toys for the eldest separate, the youngest will get the total number of toys in a combination as:
\[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\]
Placing the values in the above formula we get the value of the combination as:
\[\Rightarrow {}^{9}{{C}_{\text{3}}}\]
Now the toys that were separated can be distributed in combinations of \[{}^{\text{Total number of toys}}{{C}_{\text{number of toys received by youngest}}}\dfrac{\left[ \text{Toys amongst even children}
\right]!}{{{\left[ \text{Number of toys amongst even numbers!} \right]}^{\text{number of eldest}}}}\]
In which placing the values in the above formula, we get the combination as:
\[\Rightarrow {}^{9}{{C}_{\text{3}}}\dfrac{6!}{{{\left( 2! \right)}^{3}}}\]
This can be written as in another form which is:
\[\Rightarrow \dfrac{9!}{3!{{\left( 2! \right)}^{3}}}\]
Therefore, the total number of ways in which the toys can be distributed is given as \[\dfrac{9!}{3!{{\left(
2! \right)}^{3}}}\].
Note:
We use the method of combination here because in combination, the method is used to select elements from a collection of various other elements whereas in permutation, the method is used to arrange the elements in total.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers