How many numbers lie between squares of the following numbers?
${\text{(i)}}$12 and 13
${\text{(ii)}}$25 and 26
${\text{(iii)}}$ 99 and 100
Answer
Verified
513k+ views
Hint:- Find squares of given numbers.
As, we know that,
Total numbers lying between two numbers a and b,
is given as \[b - a - 1\], where \[b > a\].
So, here we had to find total numbers lying between squares of two numbers.
So, solving all the parts.
${\text{(i)}}$So, a will be \[{(12)^2}\]
\[ \Rightarrow a = {(12)^2} = 144\]
And, b will be \[{(13)^2}\]
\[ \Rightarrow b = {(13)^2} = 169\]
So, total numbers lying between the squares of 12 and 13 will be,
\[ \Rightarrow b - a = 169 - 144 - 1 = 24\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 12 and 13 is 24.
${\text{(ii)}}$So, a will be \[{(25)^2}\]
\[ \Rightarrow a = {(25)^2} = 625\]
And, b will be \[{(26)^2}\]
\[ \Rightarrow b = {(26)^2} = 676\]
So, total numbers lying between the squares of 25 and 26 will be,
\[ \Rightarrow b - a = 676 - 625 - 1 = 50\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 25 and 26 is 50.
${\text{(iii)}}$So, a will be \[{(99)^2}\]
\[ \Rightarrow a = {(99)^2} = 9801\]
And, b will be\[{\text{ }}{(100)^2}\]
\[ \Rightarrow b = {(100)^2} = 10000\]
So, total numbers lying between the squares of 99 and 100 will be,
\[ \Rightarrow b - a = 10000 - 9801 - 1 = 198\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 99 and 100 is 198.
Note:- Whenever we came up with this type of problem then remember that,
for any two numbers a and b such that \[b > a\]. Total numbers lying between
them will be \[b - a - 1\]. But if the given two numbers are consecutive and we
had to find total numbers lying between their squares then we can also directly
say that numbers lying between them is \[2*a\].
As, we know that,
Total numbers lying between two numbers a and b,
is given as \[b - a - 1\], where \[b > a\].
So, here we had to find total numbers lying between squares of two numbers.
So, solving all the parts.
${\text{(i)}}$So, a will be \[{(12)^2}\]
\[ \Rightarrow a = {(12)^2} = 144\]
And, b will be \[{(13)^2}\]
\[ \Rightarrow b = {(13)^2} = 169\]
So, total numbers lying between the squares of 12 and 13 will be,
\[ \Rightarrow b - a = 169 - 144 - 1 = 24\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 12 and 13 is 24.
${\text{(ii)}}$So, a will be \[{(25)^2}\]
\[ \Rightarrow a = {(25)^2} = 625\]
And, b will be \[{(26)^2}\]
\[ \Rightarrow b = {(26)^2} = 676\]
So, total numbers lying between the squares of 25 and 26 will be,
\[ \Rightarrow b - a = 676 - 625 - 1 = 50\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 25 and 26 is 50.
${\text{(iii)}}$So, a will be \[{(99)^2}\]
\[ \Rightarrow a = {(99)^2} = 9801\]
And, b will be\[{\text{ }}{(100)^2}\]
\[ \Rightarrow b = {(100)^2} = 10000\]
So, total numbers lying between the squares of 99 and 100 will be,
\[ \Rightarrow b - a = 10000 - 9801 - 1 = 198\]
\[ \Rightarrow \]Hence, the total numbers lying between squares of 99 and 100 is 198.
Note:- Whenever we came up with this type of problem then remember that,
for any two numbers a and b such that \[b > a\]. Total numbers lying between
them will be \[b - a - 1\]. But if the given two numbers are consecutive and we
had to find total numbers lying between their squares then we can also directly
say that numbers lying between them is \[2*a\].
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How many ounces are in 500 mL class 8 maths CBSE
Which king started the organization of the Kumbh fair class 8 social science CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
Advantages and disadvantages of science