Answer
Verified
404.1k+ views
Hint: We will look at the Taylor's series expansion for a function $f\left( x \right)$ about a point $x=a$. Then we will find the derivative of the given function. As Taylor's series expansion has terms with higher-order derivatives, we will compute them for the given function. We will then substitute the value $x=\dfrac{\pi }{3}$ in the derivatives obtained. We will put the obtained results in Taylor's series expansion.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE