
Obtain Taylor's series expansion for $\log \left( \cos x \right)$ about the point $x=\dfrac{\pi }{3}$ upto the fourth degree term.
Answer
524.4k+ views
Hint: We will look at the Taylor's series expansion for a function $f\left( x \right)$ about a point $x=a$. Then we will find the derivative of the given function. As Taylor's series expansion has terms with higher-order derivatives, we will compute them for the given function. We will then substitute the value $x=\dfrac{\pi }{3}$ in the derivatives obtained. We will put the obtained results in Taylor's series expansion.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

