
On comparing the ratios \[\dfrac{{{a_1}}}{{{a_2}}},\dfrac{{{b_1}}}{{{b_2}}}\] and \[\dfrac{{{c_1}}}{{{c_2}}}\], find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident. \[6x - 3y + 10 = 0\]; \[2x - y + 9 = 0\]
A.Intersect at a Point.
B.Parallel.
C.Coincident
D.Data Insufficient.
Answer
564.9k+ views
Hint: Here, we will first denote the given linear equation in the form of a general linear equation. We will then find the ratio of the coefficients of \[x\], coefficients of \[y\] and constant term. Then we will compare all the ratios and find the type of line based on the comparison. Linear equations are the equations of first order which represents the equation of line.
Complete step-by-step answer:
We are given the linear equation \[6x - 3y + 10 = 0\] and \[2x - y + 9 = 0\].
Linear equation is of the general form \[ax + by + c = 0\].
So, the given linear equation \[6x - 3y + 10 = 0\] is of the form \[{a_1}x + {b_1}y + {c_1} = 0\].
Now, the given linear equation \[2x - y + 9 = 0\] is of the form \[{a_2}x + {b_2}y + {c_2} = 0\]
By comparing the coefficients of the given linear equation with the general linear equation, we get
\[{a_1} = 6,{b_1} = - 3,{c_1} = 10\] and \[{a_2} = 2,{b_2} = - 1,{c_2} = 9\]
Now, we will find the ratio of the coefficients of \[x\], coefficients of \[y\]and constant term by substituting the values.
Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{6}{2}\]
Dividing 6 by 2, we get
\[ \Rightarrow \] Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = 3\] …………………………………………………………. \[\left( 1 \right)\]
Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{ - 3}}{{ - 1}}\]
Dividing the terms, we get
\[ \Rightarrow \] Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = 3\] …………………………………………………………… \[\left( 2 \right)\]
Ratio of the coefficients of constant term \[ = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{10}}{9}\] ……………………………….. \[\left( 3 \right)\]
Now, comparing the ratios of the coefficients of \[x\], coefficients of \[y\]and constant term, we get \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\]
If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], so we have no solution. Thus the lines represent that the linear equations are parallel.
Therefore, the lines representing the linear equations \[6x - 3y + 10 = 0;2x - y + 9 = 0\] are parallel.
Thus option (B) is correct.
Note: We might make a mistake in comparing the ratios by considering only the ratios of the coefficients of \[x\], coefficients of \[y\] and leaving off the third ratio of the constant term. It is essential for us to take the ratio of the constant term into consideration to find the correct type of line. In order to find whether the lines are parallel or coincident, we need to consider the following points:
1.If \[\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}\], we have unique solution, so the lines intersect at a point.
2.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\], we have infinite solutions, so the lines are coincident.
3.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], we have no solutions, so the lines are parallel.
Complete step-by-step answer:
We are given the linear equation \[6x - 3y + 10 = 0\] and \[2x - y + 9 = 0\].
Linear equation is of the general form \[ax + by + c = 0\].
So, the given linear equation \[6x - 3y + 10 = 0\] is of the form \[{a_1}x + {b_1}y + {c_1} = 0\].
Now, the given linear equation \[2x - y + 9 = 0\] is of the form \[{a_2}x + {b_2}y + {c_2} = 0\]
By comparing the coefficients of the given linear equation with the general linear equation, we get
\[{a_1} = 6,{b_1} = - 3,{c_1} = 10\] and \[{a_2} = 2,{b_2} = - 1,{c_2} = 9\]
Now, we will find the ratio of the coefficients of \[x\], coefficients of \[y\]and constant term by substituting the values.
Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{6}{2}\]
Dividing 6 by 2, we get
\[ \Rightarrow \] Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = 3\] …………………………………………………………. \[\left( 1 \right)\]
Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{ - 3}}{{ - 1}}\]
Dividing the terms, we get
\[ \Rightarrow \] Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = 3\] …………………………………………………………… \[\left( 2 \right)\]
Ratio of the coefficients of constant term \[ = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{10}}{9}\] ……………………………….. \[\left( 3 \right)\]
Now, comparing the ratios of the coefficients of \[x\], coefficients of \[y\]and constant term, we get \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\]
If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], so we have no solution. Thus the lines represent that the linear equations are parallel.
Therefore, the lines representing the linear equations \[6x - 3y + 10 = 0;2x - y + 9 = 0\] are parallel.
Thus option (B) is correct.
Note: We might make a mistake in comparing the ratios by considering only the ratios of the coefficients of \[x\], coefficients of \[y\] and leaving off the third ratio of the constant term. It is essential for us to take the ratio of the constant term into consideration to find the correct type of line. In order to find whether the lines are parallel or coincident, we need to consider the following points:
1.If \[\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}\], we have unique solution, so the lines intersect at a point.
2.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\], we have infinite solutions, so the lines are coincident.
3.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], we have no solutions, so the lines are parallel.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

