Answer
Verified
462.9k+ views
Hint: In this particular question use the common fact that the rocket is always going upwards. And it is given it follows a parabolic path so the parabola should be vertically downwards so assume the equation of the parabola, ${x^2} = - 4ay$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
The pictorial representation of the given problem is shown below
It is a common fact that the rocket is always going upwards.
And it is given it follows a parabolic path so the parabola should be vertically downwards.
So, let the equation of parabola
${x^2} = - 4ay..............\left( 1 \right)$
It is given that it reaches a maximum height 4m when it is 6m away from the starting point.
$\therefore $It is passing from$\left( { - 6, - 4} \right)$, so this point satisfies the equation of parabola.
From equation 1
$
{\left( { - 6} \right)^2} = - 4a\left( { - 4} \right) \Rightarrow 36 = 16a \Rightarrow a = \dfrac{9}{4} \\
\Rightarrow {x^2} = - 4\left( {\dfrac{9}{4}} \right)y = - 9y................\left( 2 \right) \\
$
Now we have to find out the angle of projection of the rocket.
So, we know angle of projection is the slope of the parabola at point $\left( { - 6, - 4} \right)$
Therefore slope${\text{ = }}\dfrac{{dy}}{{dx}} = \tan \theta $
From equation 2
\[y = \dfrac{{ - {x^2}}}{9}\]
Therefore differentiate the equation of parabola w.r.t.$x$
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{9}\left( {2x} \right) \\
\dfrac{{dy}}{{dx}}{\text{ at point }}\left( { - 6, - 4} \right) = \dfrac{{ - 1\left( {2 \times \left( { - 6} \right)} \right)}}{9} = \dfrac{{12}}{9} = \dfrac{4}{3} \\
\Rightarrow \tan \theta = \dfrac{4}{3} \Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
\]
So this is the required angle of projection.
Note: Whenever we face such type of problem the key point we have to remember is that the rocket is always goes up so the parabola is opening vertically downwards, then according to given conditions mark all the points and satisfy any point in the equation of parabola except (0, 0), so we get the value of $a$, then differentiate the equation of parabola and satisfying the starting points, then we will get the required angle of projection.
Complete step-by-step answer:
The pictorial representation of the given problem is shown below
It is a common fact that the rocket is always going upwards.
And it is given it follows a parabolic path so the parabola should be vertically downwards.
So, let the equation of parabola
${x^2} = - 4ay..............\left( 1 \right)$
It is given that it reaches a maximum height 4m when it is 6m away from the starting point.
$\therefore $It is passing from$\left( { - 6, - 4} \right)$, so this point satisfies the equation of parabola.
From equation 1
$
{\left( { - 6} \right)^2} = - 4a\left( { - 4} \right) \Rightarrow 36 = 16a \Rightarrow a = \dfrac{9}{4} \\
\Rightarrow {x^2} = - 4\left( {\dfrac{9}{4}} \right)y = - 9y................\left( 2 \right) \\
$
Now we have to find out the angle of projection of the rocket.
So, we know angle of projection is the slope of the parabola at point $\left( { - 6, - 4} \right)$
Therefore slope${\text{ = }}\dfrac{{dy}}{{dx}} = \tan \theta $
From equation 2
\[y = \dfrac{{ - {x^2}}}{9}\]
Therefore differentiate the equation of parabola w.r.t.$x$
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - 1}}{9}\left( {2x} \right) \\
\dfrac{{dy}}{{dx}}{\text{ at point }}\left( { - 6, - 4} \right) = \dfrac{{ - 1\left( {2 \times \left( { - 6} \right)} \right)}}{9} = \dfrac{{12}}{9} = \dfrac{4}{3} \\
\Rightarrow \tan \theta = \dfrac{4}{3} \Rightarrow \theta = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
\]
So this is the required angle of projection.
Note: Whenever we face such type of problem the key point we have to remember is that the rocket is always goes up so the parabola is opening vertically downwards, then according to given conditions mark all the points and satisfy any point in the equation of parabola except (0, 0), so we get the value of $a$, then differentiate the equation of parabola and satisfying the starting points, then we will get the required angle of projection.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE