On selling a T.V. at $5\% $ gain and a fridge at $10\% $ gain, a shopkeeper gains Rs.2000. But if he sells the T.V at $10\% $ gain and the fridge at $5\% $ loss, he gains Rs.1500 on the transaction. Find the actual price of the T.V. and the fridge.
Answer
Verified
511.5k+ views
Hint:
Such questions are easily solved by writing down the profit or loss in terms of linear equations and then solving those equations. In most cases, assume the cost price of the articles sold to be a variable(s) and then write down the equations. Now, let us approach the solution by writing down the linear equations.
Complete step-by-step answer:
Let the actual price (cost price) of the T.V. be Rs. X and the fridge be Rs. Y
CASE - $1$
Profit on T.V. sold at $5\% $ gain = $\frac{{5X}}{{100}}$
Profit on Fridge sold at $10\% $ gain = $\frac{{10Y}}{{100}}$
As per the question, the shopkeeper gains Rs. 2000 in the first case.
Hence, we can represent case - $1$ in equation form as
$\
\Rightarrow \frac{{5X}}{{100}} + \frac{{10Y}}{{100}} = 2000 \\
\Rightarrow \frac{X}{{20}} + \frac{Y}{{10}} = \frac{{2000}}{1} \\
\ $
By taking the L.C.M of denominators and on further simplification, we get
$\
\Rightarrow \frac{{X + 2Y}}{{20}} = 2000 \\
\Rightarrow X + 2Y = 40000 \to (1) \\
\ $
CASE - $2$
Profit on T.V. sold at $10\% $ gain = $\frac{{10X}}{{100}}$
Profit on Fridge sold at $5\% $ loss = $ - \frac{{5Y}}{{100}}$ (Here the loss is represented with a negative sign [‘-‘])
Profit on T.V. sold at $5\% $ gain = $\frac{{5X}}{{100}}$
Profit on Fridge sold at $10\% $ gain = $\frac{{10Y}}{{100}}$
As per the question, the shopkeeper gains Rs. 2000 in the first case.
Hence, we can represent case - $1$ in equation form as
$\
\Rightarrow \frac{{5X}}{{100}} + \frac{{10Y}}{{100}} = 2000 \\
\Rightarrow \frac{X}{{20}} + \frac{Y}{{10}} = \frac{{2000}}{1} \\
\ $
By taking the L.C.M of denominators and on further simplification, we get
$\
\Rightarrow \frac{{X + 2Y}}{{20}} = 2000 \\
\Rightarrow X + 2Y = 40000 \to (1) \\
\ $
CASE - $2$
Profit on T.V. sold at $10\% $ gain = $\frac{{10X}}{{100}}$
Profit on Fridge sold at $5\% $ loss = $ - \frac{{5Y}}{{100}}$ (Here the loss is represented with a negative sign [‘-‘])
As per the question, the shopkeeper would gain Rs. 1500 in the second case.
Hence, we can represent case-2 in the equation form as
Hence, we can represent case-2 in the equation form as
$\
\Rightarrow \frac{{10X}}{{100}} - \frac{{5Y}}{{100}} = 1500 \\
\Rightarrow \frac{X}{{10}} - \frac{Y}{{20}} = \frac{{1500}}{1} \\
\ $
On taking the L.C.M of denominators and on further simplification we get
$\
\Rightarrow \frac{{2X - Y}}{{20}} = 1500 \\
\Rightarrow 2X - Y = 30000 \to (2) \\
\ $
To simplify $(1)\& (2)$ equation, we have to multiply equation $(1) \times 2$ then we get
$\
\Rightarrow [(X + 2Y) = 40000] \times 2 \\
\Rightarrow 2X + 4Y = 80000 \to (3) \\
\ $
Now if we subtract $(2)$ from Equation $(3)$, we get
$\
\Rightarrow 5Y = 50000 \\
\Rightarrow Y = \frac{{50000}}{5} \\
\Rightarrow Y = 10000 \\
\ $
Now putting $Y$ value in Equation $(1)$ , we get
$\
\Rightarrow X + 2Y = 40000 \\
\Rightarrow X + (2 \times 10000) = 40000 \\
\Rightarrow X = 40000 - 20000 \\
\Rightarrow X = 20000 \\
\ $
Therefore we got both $X$ and $Y$ value which are the actual price values of T.V and Fridge.
Hence, the actual price of the T.V. is $X$=Rs.$20000$
And the actual price of the fridge is $Y$=Rs.$10000$
NOTE:
\Rightarrow \frac{{10X}}{{100}} - \frac{{5Y}}{{100}} = 1500 \\
\Rightarrow \frac{X}{{10}} - \frac{Y}{{20}} = \frac{{1500}}{1} \\
\ $
On taking the L.C.M of denominators and on further simplification we get
$\
\Rightarrow \frac{{2X - Y}}{{20}} = 1500 \\
\Rightarrow 2X - Y = 30000 \to (2) \\
\ $
To simplify $(1)\& (2)$ equation, we have to multiply equation $(1) \times 2$ then we get
$\
\Rightarrow [(X + 2Y) = 40000] \times 2 \\
\Rightarrow 2X + 4Y = 80000 \to (3) \\
\ $
Now if we subtract $(2)$ from Equation $(3)$, we get
$\
\Rightarrow 5Y = 50000 \\
\Rightarrow Y = \frac{{50000}}{5} \\
\Rightarrow Y = 10000 \\
\ $
Now putting $Y$ value in Equation $(1)$ , we get
$\
\Rightarrow X + 2Y = 40000 \\
\Rightarrow X + (2 \times 10000) = 40000 \\
\Rightarrow X = 40000 - 20000 \\
\Rightarrow X = 20000 \\
\ $
Therefore we got both $X$ and $Y$ value which are the actual price values of T.V and Fridge.
Hence, the actual price of the T.V. is $X$=Rs.$20000$
And the actual price of the fridge is $Y$=Rs.$10000$
NOTE:
In this problem we have concentrated on the gain and loss values that means sign matters here for gain we use positive sign and for loss we use negative sign. Further on simplifying the given conditions we get the answer.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE