Answer
Verified
499.8k+ views
Hint: Here, in this solution we will use the concept of independent events i.e.., “the two events E and F are said to be independent if and only if $P(E \cap F) = P(E).P(F)$.”
Complete step-by-step answer:
i. Given,
E: ‘the card drawn is spade’
F: ‘the card drawn is an ace’
In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.
Therefore,
$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.
$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.
$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\
\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\
$
Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.
ii. Given,
$E$: ‘the card drawn is black’
$F$: ‘the card drawn is a king ’
In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.
Therefore,
$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.
$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.
$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\
\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\
$
Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.
iii. Given,
$E$: ‘the card drawn is a king or queen’
$F$: ‘the card drawn is a queen or jack’
In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.
Therefore,
$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.
$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.
There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.
$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\
\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\
$
Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.
Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.
Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.
Complete step-by-step answer:
i. Given,
E: ‘the card drawn is spade’
F: ‘the card drawn is an ace’
In a deck of 52 cards, 13 cards will be spade and 4 cards are ace and only 1 card is an ace of spades.
Therefore,
$P(E)$=$\dfrac{{13}}{{52}} = \dfrac{1}{4}$i.e.., the probability of drawing a spade from a deck of 52 cards.
$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing an ace from a deck of 52 cards.
$P(E \cap F) = \dfrac{1}{{52}}$ i.e.., the probability of drawing a card which is spade as well as an ace from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{4}.\dfrac{1}{{13}} \\
\Rightarrow \dfrac{1}{{52}} = \dfrac{1}{{52}}[\therefore L.H.S = R.H.S] \\
$
Therefore, we can say the events $E$ and $F$ are independent as they are satisfying the condition of independent events.
ii. Given,
$E$: ‘the card drawn is black’
$F$: ‘the card drawn is a king ’
In a deck of 52 cards, 26 cards are black and 4 cards are kings only 2cards are black as well as kings.
Therefore,
$P(E)$=$\dfrac{{26}}{{52}} = \dfrac{1}{2}$i.e.., the probability of drawing a black card from a deck of 52 cards.
$P(F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$i.e.., the probability of drawing a king from a deck of 52 cards.
$P(E \cap F) = \dfrac{2}{{52}} = \dfrac{1}{{26}}$ i.e., the probability of drawing a card which is black as well as king from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{2}.\dfrac{1}{{13}} \\
\Rightarrow \dfrac{1}{{26}} = \dfrac{1}{{26}}[\therefore L.H.S = R.H.S] \\
$
Therefore, we can say the events $E$and $F$ are independent as they are satisfying the condition of independent events.
iii. Given,
$E$: ‘the card drawn is a king or queen’
$F$: ‘the card drawn is a queen or jack’
In a deck of 52 cards, 4 cards are kings, 4 cards are queens and 4 cards are jacks.
Therefore,
$P(E)$=$\dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either king or queen.
$P(F) = \dfrac{8}{{52}} = \dfrac{2}{{13}}$i.e.., the probability of drawing a card which is either queen or jack.
There are exactly 4 cards which are “king or queen” and “queen or jack”. i.e.., drawing only queen cards.
$P(E \cap F) = \dfrac{4}{{52}} = \dfrac{1}{{13}}$ i.e., the probability of drawing a card which is a queen from a deck of 52 cards.
Now, to prove $E$ and $F$events to be independent the following condition to be satisfied.
$P(E \cap F) = P(E).P(F) \to (1)$
So let us substitute the obtained values of$P(E)$, $P(F)$and $P(E \cap F)$in equation (1) we get,
$
\Rightarrow \dfrac{1}{{13}} = \dfrac{2}{{13}}.\dfrac{2}{{13}} \\
\Rightarrow \dfrac{1}{{13}} \ne \dfrac{4}{{169}} \\
$
Therefore, we can say the events E and F are not independent as they are not satisfying the condition of independent events.
Therefore, in two cases i.e.., (i), (ii) the events E and F are independent.
Note: If A, B are the events of a sample space S are said to be independent only if they are pairwise independent i.e., $P(A \cap B) = P(A).P(B)$.
Recently Updated Pages
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Which one of the following is a leguminous crop A Pulses class 10 social science CBSE
Fill in the blank with the most appropriate word She class 10 english CBSE
Mention the aim of the forest conservation act class 10 social science CBSE