Answer
Verified
469.2k+ views
Hint: To find the probability that an integer is neither divisible by \[4\] nor by $6$, we have to find the total number of integers from 1,2,….100 which are divisible by 4, divisible by 6 and divisible by both 4 and 6. Then using the formula for set theory we calculate the number of integers that are divisible by 4 or by 6. Then we subtract the number of integers divisible by 4 or by 6 from the total number of integers.
* \[n(A \cup B) = n(A) + n(B) - n(A \cap B)\]
* Probability of an event is the number of favorable outcomes divided by the total number of outcomes.
Complete step-by-step answer:
Let us assume the number of integers divisible by 4 be denoted by \[n(A)\]
Number of integers divisible by 6 be denoted by \[n(B)\]
Number of integers divisible by both 4 and 6 will be denoted by \[n(A \cap B)\]
Therefore, the number of integers divisible by either 4 or by 6 will be denoted by \[n(A \cup B)\]
Find the total numbers which are divisible by $4$.
Numbers from $1,2,...,100$ which are divisible by $4$ are written as multiples of 4 which are less than or equal to 100.
$1 \times 4 = 4,2 \times 4 = 8,...,25 \times 4 = 100$.
$\therefore $ Total numbers which are divisible by \[4 = 25\]
\[ \Rightarrow n(A) = 25\]
Find the total numbers which are divisible by $6.$
Numbers from $1,2,...,100$ which are divisible by $6$ are written as multiples of 6 which are less than or equal to 100.
$1 \times 6 = 6,2 \times 6 = 12,...,16 \times 6 = 96$
$\therefore $ Total numbers which are divisible by \[6 = 16\]
\[ \Rightarrow n(B) = 16\]
Find the total numbers which are divisible by both \[4, 6\].
Here we take LCM of \[4, 6\] as \[12\]. So, the numbers which are divisible by both 4 and 6 are divisible by 12.
Total numbers which are divisible by 12 are written as multiples of 12 which are less than or equal to 100.
$1 \times 12 = 12,2 \times 12 = 24,...,8 \times 12 = 96$
$\therefore $ Total numbers which are divisible by \[12 = 8\]
\[ \Rightarrow n(A \cap B) = 8\]
Substitute the values in the formula \[n(A \cup B) = n(A) + n(B) - n(A \cap B)\]
\[
\Rightarrow n(A \cup B) = 25 + 16 - 8 \\
\Rightarrow n(A \cup B) = 41 - 8 = 33 \\
\]
So, the number of integers divisible by either 4 or by 6 is \[n(A \cup B) = 33\]
Then, number of integers which are neither divisible by 4 nor by 6 is given by total number of integers \[ - n(A \cup B)\]
\[ \Rightarrow 100 - n(A \cup B) = 100 - 33 = 67\]
Now calculate the probability that number is neither divisible by 4 nor by 6
Since, we know Probability of an event is the number of favorable outcomes divided by the total number of outcomes.
Here, the number of favorable outcomes is 67 and the total number of outcomes is 100.
Probability ${\text{ = }}\dfrac{{67}}{{100}} = 0.67.$
So, the correct answer is “Option B”.
Note: Students are likely to miss out the number of integers that are divisible by both 4 and 6, and they tend to subtract both number of integers divisible by 4 and number of integers divisible by 6 from total number of integers and find the probability which is wrong, there are some numbers which are divisible by both 4 and 6 together.
* \[n(A \cup B) = n(A) + n(B) - n(A \cap B)\]
* Probability of an event is the number of favorable outcomes divided by the total number of outcomes.
Complete step-by-step answer:
Let us assume the number of integers divisible by 4 be denoted by \[n(A)\]
Number of integers divisible by 6 be denoted by \[n(B)\]
Number of integers divisible by both 4 and 6 will be denoted by \[n(A \cap B)\]
Therefore, the number of integers divisible by either 4 or by 6 will be denoted by \[n(A \cup B)\]
Find the total numbers which are divisible by $4$.
Numbers from $1,2,...,100$ which are divisible by $4$ are written as multiples of 4 which are less than or equal to 100.
$1 \times 4 = 4,2 \times 4 = 8,...,25 \times 4 = 100$.
$\therefore $ Total numbers which are divisible by \[4 = 25\]
\[ \Rightarrow n(A) = 25\]
Find the total numbers which are divisible by $6.$
Numbers from $1,2,...,100$ which are divisible by $6$ are written as multiples of 6 which are less than or equal to 100.
$1 \times 6 = 6,2 \times 6 = 12,...,16 \times 6 = 96$
$\therefore $ Total numbers which are divisible by \[6 = 16\]
\[ \Rightarrow n(B) = 16\]
Find the total numbers which are divisible by both \[4, 6\].
Here we take LCM of \[4, 6\] as \[12\]. So, the numbers which are divisible by both 4 and 6 are divisible by 12.
Total numbers which are divisible by 12 are written as multiples of 12 which are less than or equal to 100.
$1 \times 12 = 12,2 \times 12 = 24,...,8 \times 12 = 96$
$\therefore $ Total numbers which are divisible by \[12 = 8\]
\[ \Rightarrow n(A \cap B) = 8\]
Substitute the values in the formula \[n(A \cup B) = n(A) + n(B) - n(A \cap B)\]
\[
\Rightarrow n(A \cup B) = 25 + 16 - 8 \\
\Rightarrow n(A \cup B) = 41 - 8 = 33 \\
\]
So, the number of integers divisible by either 4 or by 6 is \[n(A \cup B) = 33\]
Then, number of integers which are neither divisible by 4 nor by 6 is given by total number of integers \[ - n(A \cup B)\]
\[ \Rightarrow 100 - n(A \cup B) = 100 - 33 = 67\]
Now calculate the probability that number is neither divisible by 4 nor by 6
Since, we know Probability of an event is the number of favorable outcomes divided by the total number of outcomes.
Here, the number of favorable outcomes is 67 and the total number of outcomes is 100.
Probability ${\text{ = }}\dfrac{{67}}{{100}} = 0.67.$
So, the correct answer is “Option B”.
Note: Students are likely to miss out the number of integers that are divisible by both 4 and 6, and they tend to subtract both number of integers divisible by 4 and number of integers divisible by 6 from total number of integers and find the probability which is wrong, there are some numbers which are divisible by both 4 and 6 together.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers