![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Oxidation of succinate ion produces ethylene and carbon dioxide gases, On passing \[0.2\] Faraday electricity through an aqueous solution of potassium succinate, the total volume of gases (at both cathode and anode) at STP ($1$ atm and $273K$ ) is $5L$ .
A . True
B . False
Answer
124.8k+ views
Hint : This numerical can be solved with the help of Faraday’s law of electrolysis.According to the first law of electrolysis the mass of any substance deposited or liberated at an electrode is directly proportional to the quantity of electricity or charge passed through that solution. And the second law states that the mass of substance deposited or liberated at the electrodes is directly proportional to their equivalent weight when the same amount of current is passed through different electrolytes connected in series.
Complete step by step solution:
Oxidation reaction of succinate ions is given below, it produces ethylene and carbon dioxide gases.
Now we can see that it is given in the problem that \[0.2\] Faraday electricity through an aqueous solution of potassium succinate then according to Faraday’s law mass equivalent for each gas will be \[0.2\]
Equivalents of the product of the above reaction $({C_2}{H_4} + C{O_2} + {H_2}) = 0.2 + 0.2 + 0.2 = 0.6$ .
Actual number of moles of gases (n) $ = 0.2 \times \dfrac{1}{2} + 0.2 \times 1 + 0.2 \times \dfrac{1}{2} = 0.4$ .
We know that at standard temperature and pressure $1$ mol of gas is equivalent to $22.4L$. Therefore $0.4$ mole of gas will be equal to $ \Rightarrow 0.4 \times 22.4 = 8.964L$
Hence total volume of gases produced is $8.964L$ but in the question it is given that the total volume of gases produced at STP is $5L$
So option B is correct, that is it is false.
Note : We have approached this problem with the help of Faraday’s law of electrolysis . It is given in the problem that \[0.2\] Faraday electricity is passed through an aqueous solution of potassium succinate hence with the help of the second law we get the equivalent weight of each gas. After that we have calculated the actual number of moles and which leads to the volume of the gas at STP.
Complete step by step solution:
Oxidation reaction of succinate ions is given below, it produces ethylene and carbon dioxide gases.
![](https://www.vedantu.com/question-sets/4319d97e-67e9-4f18-a262-a11f258174c45151072019830975252.png)
Equivalents of the product of the above reaction $({C_2}{H_4} + C{O_2} + {H_2}) = 0.2 + 0.2 + 0.2 = 0.6$ .
Actual number of moles of gases (n) $ = 0.2 \times \dfrac{1}{2} + 0.2 \times 1 + 0.2 \times \dfrac{1}{2} = 0.4$ .
We know that at standard temperature and pressure $1$ mol of gas is equivalent to $22.4L$. Therefore $0.4$ mole of gas will be equal to $ \Rightarrow 0.4 \times 22.4 = 8.964L$
Hence total volume of gases produced is $8.964L$ but in the question it is given that the total volume of gases produced at STP is $5L$
So option B is correct, that is it is false.
Note : We have approached this problem with the help of Faraday’s law of electrolysis . It is given in the problem that \[0.2\] Faraday electricity is passed through an aqueous solution of potassium succinate hence with the help of the second law we get the equivalent weight of each gas. After that we have calculated the actual number of moles and which leads to the volume of the gas at STP.
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Types of Solutions - Solution in Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Alcohol and Phenol
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 12 Chemistry Chapter 9 Amines
![arrow-right](/cdn/images/seo-templates/arrow-right.png)