Oxidative phosphorylation of cytoplasmic ${\text{NADH}}\left( {{H^ + }} \right)$ takes place in
(A) Cytosol
(B) E.R
(C) Mitochondria
(D) Golgi bodies
Answer
Verified
478.5k+ views
Hint: The oxidative phosphorylation of cytoplasmic ${\text{NADH}}\left( {{H^ + }} \right)$ is the process in the electron transport chain that takes place in the eukaryotes. In this electron transport mechanism, the electrons are transported from the electron donors to the electron acceptors by the process of redox reactions.
Complete Answer:
${\text{NADH}}\left( {{H^ + }} \right)$ Ions are released from the products of the glycolysis, fatty acid oxidation and the Krebs’s cycle process.
- These ions help to undergo oxidative phosphorylation to convert the ADP into ATP (Adenosine triphosphate).
- The produced ATP synthase and electron transport assembly forms the integral part of the inner membrane of the mitochondria. This electron transport assembly helps in the catalyzation of the reactions of oxidation and reductions that take place simultaneously.
- In the electron transport chain, the electron donors pass the electron from them to the electronegative acceptor.
- The energy released in these transformations of electrons to oxygen helps to generate the proton gradient across the membrane of the mitochondria. This process pumps the proton to the inner membrane of the mitochondria.
- Hence phosphorylation of cytoplasmic ${\text{NADH}}\left( {{H^ + }} \right)$ takes place in mitochondria.
Thus, the option (C) is correct.
Note: In the plants, the electron transport chain is known to take place in the thylakoid membrane. Here not ${\text{NADH}}\left( {{H^ + }} \right)$ is involved, only the light energy is used to drive up the process of the redox reactions to convert ADP to the ATP.
Complete Answer:
${\text{NADH}}\left( {{H^ + }} \right)$ Ions are released from the products of the glycolysis, fatty acid oxidation and the Krebs’s cycle process.
- These ions help to undergo oxidative phosphorylation to convert the ADP into ATP (Adenosine triphosphate).
- The produced ATP synthase and electron transport assembly forms the integral part of the inner membrane of the mitochondria. This electron transport assembly helps in the catalyzation of the reactions of oxidation and reductions that take place simultaneously.
- In the electron transport chain, the electron donors pass the electron from them to the electronegative acceptor.
- The energy released in these transformations of electrons to oxygen helps to generate the proton gradient across the membrane of the mitochondria. This process pumps the proton to the inner membrane of the mitochondria.
- Hence phosphorylation of cytoplasmic ${\text{NADH}}\left( {{H^ + }} \right)$ takes place in mitochondria.
Thus, the option (C) is correct.
Note: In the plants, the electron transport chain is known to take place in the thylakoid membrane. Here not ${\text{NADH}}\left( {{H^ + }} \right)$ is involved, only the light energy is used to drive up the process of the redox reactions to convert ADP to the ATP.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?