Answer
Verified
345.6k+ views
Hint: A series RLC is an AC circuit that is said to be in electrical resonance when the circuit power factor is unity i.e., ${X_L} = {X_C}$. Where ${X_L}$ and ${X_C}$ are inductive reactance and capacitive reactance respectively.
The phase angle in a RLC circuit is given by $\phi = {\tan ^{ - 1}}\left( {\dfrac{{{X_L} - {X_C}}}{R}} \right)$. Where $R$ is the resistance.
Complete step by step answer:
Let’s draw an AC circuit containing resistor, inductor and capacitor in series. $E$ and $I$ are the e.m.f. and current in the circuit respectively.
The voltage across resistor $\left( R \right)$, ${V_R} = IR$
${V_R}$ is in phase with $I$.
The voltage across inductor $\left( L \right)$, ${V_L} = I{X_L}$
${V_L}$ leads $I$ by ${90^0}$.
The voltage across capacitor $\left( C \right)$, ${V_C} = I{X_C}$
${V_C}$ lags $I$ by ${90^0}$.
Consider ${V_L} > {V_C}$. Now draw the phasor diagram.
The resultant voltage in the phasor diagram is the applied voltage and it is given by
$E = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Or $E = \sqrt {{{\left( {IR} \right)}^2} + {{\left( {I{X_L} - I{X_C}} \right)}^2}} $
Or $ I = \dfrac{E}{{\sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} }}$
The quantity $Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $ is called impedance of the circuit.
The angle $\phi $ in the above phasor diagram is known as phase angle in the circuit.
$\tan \phi = \dfrac{{{V_L} - {V_C}}}{{{V_R}}}$
Or $\tan \phi = \dfrac{{{X_L} - {X_C}}}{R}$
Or $ \Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{{{X_L} - {X_C}}}{R}} \right)$
At resonance, the impedance of the circuit is minimum and is equal to the resistance of the circuit.
i.e., $Z = R$
Or $\sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} = R$
Further simplify
$ \Rightarrow {X_L} = {X_C}$
Now at resonance, phase angle $\phi = {\tan ^{ - 1}}\left( 0 \right)$
Or $\phi = {0^0}$
Hence, the correct option is (C) ${0^0}$.
Note: Alternative method for solving the problem:
When the RLC series AC circuit is at resonance, the average power in the circuit is maximum.
$P = {E_{rms}}{I_{rms}}\cos \phi $.
Where ${E_{rms}}$ and ${I_{rms}}$ are the rms values of voltage and current in the circuit.
$co\phi $ is called the power factor of the circuit.
At resonance, $P = {E_{rms}}{I_{rms}}$
Therefore, $\cos \phi = 1$
Or $\phi = {0^0}$
The phase angle in a RLC circuit is given by $\phi = {\tan ^{ - 1}}\left( {\dfrac{{{X_L} - {X_C}}}{R}} \right)$. Where $R$ is the resistance.
Complete step by step answer:
Let’s draw an AC circuit containing resistor, inductor and capacitor in series. $E$ and $I$ are the e.m.f. and current in the circuit respectively.
The voltage across resistor $\left( R \right)$, ${V_R} = IR$
${V_R}$ is in phase with $I$.
The voltage across inductor $\left( L \right)$, ${V_L} = I{X_L}$
${V_L}$ leads $I$ by ${90^0}$.
The voltage across capacitor $\left( C \right)$, ${V_C} = I{X_C}$
${V_C}$ lags $I$ by ${90^0}$.
Consider ${V_L} > {V_C}$. Now draw the phasor diagram.
The resultant voltage in the phasor diagram is the applied voltage and it is given by
$E = \sqrt {{V_R}^2 + {{\left( {{V_L} - {V_C}} \right)}^2}} $
Or $E = \sqrt {{{\left( {IR} \right)}^2} + {{\left( {I{X_L} - I{X_C}} \right)}^2}} $
Or $ I = \dfrac{E}{{\sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} }}$
The quantity $Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $ is called impedance of the circuit.
The angle $\phi $ in the above phasor diagram is known as phase angle in the circuit.
$\tan \phi = \dfrac{{{V_L} - {V_C}}}{{{V_R}}}$
Or $\tan \phi = \dfrac{{{X_L} - {X_C}}}{R}$
Or $ \Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{{{X_L} - {X_C}}}{R}} \right)$
At resonance, the impedance of the circuit is minimum and is equal to the resistance of the circuit.
i.e., $Z = R$
Or $\sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} = R$
Further simplify
$ \Rightarrow {X_L} = {X_C}$
Now at resonance, phase angle $\phi = {\tan ^{ - 1}}\left( 0 \right)$
Or $\phi = {0^0}$
Hence, the correct option is (C) ${0^0}$.
Note: Alternative method for solving the problem:
When the RLC series AC circuit is at resonance, the average power in the circuit is maximum.
$P = {E_{rms}}{I_{rms}}\cos \phi $.
Where ${E_{rms}}$ and ${I_{rms}}$ are the rms values of voltage and current in the circuit.
$co\phi $ is called the power factor of the circuit.
At resonance, $P = {E_{rms}}{I_{rms}}$
Therefore, $\cos \phi = 1$
Or $\phi = {0^0}$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE