
Phenyl methyl ether (anisole) reacts with HI to give phenol and methyl iodide and not iodobenzene and methyl alcohol because _____.
A- ${ I }^{ - }$ ion prefers to combine with the smaller group in order to minimise steric hindrance
B- ${ I }^{ - }$ ion is not reactive towards benzene
C- Phenol is formed as a result of hydrolysis of iodobenzene
D- Methyl alcohol formed during reaction reacts with ${ I }^{ - }$ to form methyl iodide
Answer
585.9k+ views
Hint: Try to identify the mechanism of the reaction. Try to figure out how HI starts the reaction. Why ethers take part in the reaction. There will be a nucleophilic substitution. Figure out the mechanism of nucleophilic addition.
Complete step by step answer: We know that HI reacts with ethers. HI is a strong acid so hydrogen ion is readily generated. This generated hydrogen ion attacks the oxygen atom of phenyl methyl ether as oxygen has lone pairs.
When oxygen forms 3 bonds and gains a positive charge it becomes somewhat unstable. So the compound undergoes nucleophilic addition. It undergoes the $S_{ N^{ 2 } }$ mechanism as the charge is unstable on the methyl group and also there is a resonance between oxygen and benzene ring. When there is a nucleophilic attack there will be a transition state where there are 5 bonds for the carbon atom of the methyl group.
We know that iodine ions have a large size and the benzene ring is also large compared to the methyl group. If both the iodine and benzene group approach together there will be a lot of steric repulsions. As a result, phenol and methyl iodide are formed.
Therefore, option A is correct.
Note: When there is a positive charge on the oxygen atom then it will resonate with the benzene ring and stabilize the positive charge. That’s why the oxygen group does not leave the benzene ring. This reaction cannot follow the $S_{ N^{ 1 } }$ mechanism because methyl cation is highly unstable.
Complete step by step answer: We know that HI reacts with ethers. HI is a strong acid so hydrogen ion is readily generated. This generated hydrogen ion attacks the oxygen atom of phenyl methyl ether as oxygen has lone pairs.
When oxygen forms 3 bonds and gains a positive charge it becomes somewhat unstable. So the compound undergoes nucleophilic addition. It undergoes the $S_{ N^{ 2 } }$ mechanism as the charge is unstable on the methyl group and also there is a resonance between oxygen and benzene ring. When there is a nucleophilic attack there will be a transition state where there are 5 bonds for the carbon atom of the methyl group.
We know that iodine ions have a large size and the benzene ring is also large compared to the methyl group. If both the iodine and benzene group approach together there will be a lot of steric repulsions. As a result, phenol and methyl iodide are formed.
Therefore, option A is correct.
Note: When there is a positive charge on the oxygen atom then it will resonate with the benzene ring and stabilize the positive charge. That’s why the oxygen group does not leave the benzene ring. This reaction cannot follow the $S_{ N^{ 1 } }$ mechanism because methyl cation is highly unstable.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

