
Photoelectric Effect and Raman Effect can be explained on the basis of:
A. Newton’s Corpuscular theory of matter
B. Huygens wave theory of light
C. Maxwell’s Electromagnetic theory of light
D. Planck’s Quantum theory of light
Answer
479.7k+ views
Hint: Both Photoelectric Effect and Raman Effect are based on the phenomenon of scattering of light.
Raman scattering can be understood easily if the incident light is considered as consisting of particles, or photons.
Complete step by step answer:
When a beam of light falls on a metal surface, it gets deflected by the molecules of the metal. This effect is known as the photoelectric effect. Photoelectric effect is based on the principle of the emission of electrons when electromagnetic radiation, such as light, hits a material surface and photons eject out. Raman observed that not only the light gets deflected but its wavelength also changes. Raman scattering can be understood easily if the incident light is considered as consisting of particles, or photons with energy proportional to frequency, that strike the molecules of a surface. Later on Planck observed that different atoms and molecules can emit or absorb energy in a fixed quantity. The amount of energy of the radiation absorbed or emitted is directly proportional to the frequency of the radiation used. So both Photoelectric Effect and Raman Effect can be explained on the basis of Planck’s Quantum theory of light
So, the correct answer is “Option D”.
Note:
The phenomenon of Raman Effect is named for Indian physicist Sir Chandrasekhara Venkata Raman, who first published observations of the effect in 1928. The photoelectric effect was first discovered in 1887 by the German physicist Heinrich Rudolf Hertz. He observed that when ultraviolet light shines on two metal electrodes and a potential difference is applied across the electrodes, then the light changes the voltage at which sparking takes place.
Raman scattering can be understood easily if the incident light is considered as consisting of particles, or photons.
Complete step by step answer:
When a beam of light falls on a metal surface, it gets deflected by the molecules of the metal. This effect is known as the photoelectric effect. Photoelectric effect is based on the principle of the emission of electrons when electromagnetic radiation, such as light, hits a material surface and photons eject out. Raman observed that not only the light gets deflected but its wavelength also changes. Raman scattering can be understood easily if the incident light is considered as consisting of particles, or photons with energy proportional to frequency, that strike the molecules of a surface. Later on Planck observed that different atoms and molecules can emit or absorb energy in a fixed quantity. The amount of energy of the radiation absorbed or emitted is directly proportional to the frequency of the radiation used. So both Photoelectric Effect and Raman Effect can be explained on the basis of Planck’s Quantum theory of light
So, the correct answer is “Option D”.
Note:
The phenomenon of Raman Effect is named for Indian physicist Sir Chandrasekhara Venkata Raman, who first published observations of the effect in 1928. The photoelectric effect was first discovered in 1887 by the German physicist Heinrich Rudolf Hertz. He observed that when ultraviolet light shines on two metal electrodes and a potential difference is applied across the electrodes, then the light changes the voltage at which sparking takes place.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
