Plot a graph showing the variation of undecayed nuclei $N$ versus time $t$. From the graph, find out how one can determine the half-life and average life of the radioactive nuclei.
Answer
Verified
116.4k+ views
Hint: Radioactive decay is the process of slow disintegration of radioactive elements by releasing their energy in the form of radiation. The radioactive materials have unstable nuclei and therefore the nuclei breakdowns take place in the form of radiation. The radioactivity is given by the formula:
$A = - \dfrac{{dN}}{{dt}}$
where $A = $ total activity
$N = $ number of particles
$t = $ time
Complete step by step solution:
In radioactive decay, the rate of radioactive decay is proportional to the number of nuclei present. The number of nuclei in radioactive decay degrades and exponentially decreases with time. As per the radioactive decay law, the disintegration equation is given by:
$N = {N_0}{e^{ - \lambda t}}$
Where, $N = $ number of radioactive atoms at any random time.
${N_0} = $ number of radioactive atoms present initially.
$\lambda = $ decay constant
$t = $ time
The above plot depicts the variation of the number of nuclei disintegrate with time. $N$ gradually decreases with increase in time and there comes a state where the nuclei are completely depleted at a given time. The rate of disintegration of nuclei is directly proportional to the nuclei available i.e. $ - \dfrac{{dN}}{{dt}} \propto N$
$ \Rightarrow - \dfrac{{dN}}{{dt}} = \lambda N$
The negative sign represents the gradual decrease of the number of nuclei with time.
The half-life of the radioactive element is the time required for its activity to decrease by one-half. So after one half-life, 50% of the initial activity remains and after two half-lives only 25% of the initial activity remains and after three half-lives, only 12.5% is present and so forth.
The half-life of a given nuclei can be derived as follows:
In half-life of a nuclei, the given lifespan of the nuclei is completed by 50% and it is denoted as ${t_{1/2}}$.
Therefore, the half-life of an atomic nuclei can be given by substituting $t = {t_{1/2}}$and $N = \dfrac{{{N_0}}}{2}$ in $N = {N_0}{e^{ - \lambda {t_{1/2}}}}$
Which gives, $\dfrac{{{N_0}}}{2} = {N_0}{e^{ - \lambda {t_{1/2}}}}$ $ \Rightarrow \dfrac{1}{2} = {e^{ - \lambda {t_{1/2}}}}$
Taking log on both side, we get ${\log _e}(2) = \lambda {t_{1/2}}$
$ \Rightarrow 0.693 = \lambda {t_{1/2}}$ $ \Rightarrow {t_{1/2}} = \dfrac{{0.693}}{\lambda }$
The average life of a nuclei atom is the amount of time required for the nuclei to decay to $36.8\% $ of the total amount. Therefore $N = 0.368{N_0}$ and $t$ changes as
$0.368{N_0} = {N_0}{e^{ - \lambda {t_{avg}}}}$
$ \Rightarrow 0.368 = {e^{ - \lambda {t_{avg}}}}$
Taking log on both sides,
${\log _e}(0.368) = - \lambda {t_{avg}}$
Which gives, $0.434 = \lambda {t_{avg}}$
$ \Rightarrow {t_{avg}} = \dfrac{{0.434}}{\lambda }$
Note: The unstable nuclei in radioactive samples do not decay simultaneously. Instead the decay of a given nucleus is an entirely random event. The rate of nuclei disintegration is insulated by surrounding electrons and hence the disintegration of the radioactive element is independent of temperature, pressure and doesn't follow any mass law or any other law that explains the physical and chemical change.
$A = - \dfrac{{dN}}{{dt}}$
where $A = $ total activity
$N = $ number of particles
$t = $ time
Complete step by step solution:
In radioactive decay, the rate of radioactive decay is proportional to the number of nuclei present. The number of nuclei in radioactive decay degrades and exponentially decreases with time. As per the radioactive decay law, the disintegration equation is given by:
$N = {N_0}{e^{ - \lambda t}}$
Where, $N = $ number of radioactive atoms at any random time.
${N_0} = $ number of radioactive atoms present initially.
$\lambda = $ decay constant
$t = $ time
The above plot depicts the variation of the number of nuclei disintegrate with time. $N$ gradually decreases with increase in time and there comes a state where the nuclei are completely depleted at a given time. The rate of disintegration of nuclei is directly proportional to the nuclei available i.e. $ - \dfrac{{dN}}{{dt}} \propto N$
$ \Rightarrow - \dfrac{{dN}}{{dt}} = \lambda N$
The negative sign represents the gradual decrease of the number of nuclei with time.
The half-life of the radioactive element is the time required for its activity to decrease by one-half. So after one half-life, 50% of the initial activity remains and after two half-lives only 25% of the initial activity remains and after three half-lives, only 12.5% is present and so forth.
The half-life of a given nuclei can be derived as follows:
In half-life of a nuclei, the given lifespan of the nuclei is completed by 50% and it is denoted as ${t_{1/2}}$.
Therefore, the half-life of an atomic nuclei can be given by substituting $t = {t_{1/2}}$and $N = \dfrac{{{N_0}}}{2}$ in $N = {N_0}{e^{ - \lambda {t_{1/2}}}}$
Which gives, $\dfrac{{{N_0}}}{2} = {N_0}{e^{ - \lambda {t_{1/2}}}}$ $ \Rightarrow \dfrac{1}{2} = {e^{ - \lambda {t_{1/2}}}}$
Taking log on both side, we get ${\log _e}(2) = \lambda {t_{1/2}}$
$ \Rightarrow 0.693 = \lambda {t_{1/2}}$ $ \Rightarrow {t_{1/2}} = \dfrac{{0.693}}{\lambda }$
The average life of a nuclei atom is the amount of time required for the nuclei to decay to $36.8\% $ of the total amount. Therefore $N = 0.368{N_0}$ and $t$ changes as
$0.368{N_0} = {N_0}{e^{ - \lambda {t_{avg}}}}$
$ \Rightarrow 0.368 = {e^{ - \lambda {t_{avg}}}}$
Taking log on both sides,
${\log _e}(0.368) = - \lambda {t_{avg}}$
Which gives, $0.434 = \lambda {t_{avg}}$
$ \Rightarrow {t_{avg}} = \dfrac{{0.434}}{\lambda }$
Note: The unstable nuclei in radioactive samples do not decay simultaneously. Instead the decay of a given nucleus is an entirely random event. The rate of nuclei disintegration is insulated by surrounding electrons and hence the disintegration of the radioactive element is independent of temperature, pressure and doesn't follow any mass law or any other law that explains the physical and chemical change.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics