
Plot the following graphs:
1. $P$ vs $V$
2. $P$ vs $\dfrac{1}{V}$
3. $PV$ vs $P$
Answer
434.7k+ views
Hint: Boyle’s law helps in understanding the behaviour of gases when the temperature is constant. It states that the pressure of the gas is inversely proportional to its volume when the temperature is constant.
$
P\propto V \\
P = \dfrac{k}{V} \\
PV = k \\
$Where $V$ is the volume, $P$ is the pressure and $k$ is the constant value
Complete step by step solution:
1. $P$ vs $V$:
As we know that pressure and volume of a gas is inversely proportional (According to Boyle’s law), Hence, pressure will increase as the volume decreases. The graph is as follows:
Hence, The graph of pressure vs volume will be a rectangular hyperbola.
2. $P$ vs $\dfrac{1}{V}$:
As we know that $P$ and $\dfrac{1}{V}$ is directly proportional (According to boyle’s law), Hence, pressure will increase as the volume increases.The graph is as follows:
Hence, The graph of $P$ vs $\dfrac{1}{V}$ will be a linear graph.
3. $PV$ vs $P$:
As we know that $PV = k$, (According to Boyle's law). Hence the $PV$ axis will remain constant for all values of $P$. The graph is as follows:
Hence, The graph of $PV$ vs $P$ will be a constant graph.
Note: Boyle’s law has many real life applications. For example, It’s being used in the medical field to check the breathing system in the human body. It helps in explaining how the air pressure within our lungs increases or decreases with respect to the volume of our lungs. This results in the difference in air pressure within our lungs and the environmental air.
$
P\propto V \\
P = \dfrac{k}{V} \\
PV = k \\
$Where $V$ is the volume, $P$ is the pressure and $k$ is the constant value
Complete step by step solution:
1. $P$ vs $V$:
As we know that pressure and volume of a gas is inversely proportional (According to Boyle’s law), Hence, pressure will increase as the volume decreases. The graph is as follows:

Hence, The graph of pressure vs volume will be a rectangular hyperbola.
2. $P$ vs $\dfrac{1}{V}$:
As we know that $P$ and $\dfrac{1}{V}$ is directly proportional (According to boyle’s law), Hence, pressure will increase as the volume increases.The graph is as follows:

Hence, The graph of $P$ vs $\dfrac{1}{V}$ will be a linear graph.
3. $PV$ vs $P$:
As we know that $PV = k$, (According to Boyle's law). Hence the $PV$ axis will remain constant for all values of $P$. The graph is as follows:

Hence, The graph of $PV$ vs $P$ will be a constant graph.
Note: Boyle’s law has many real life applications. For example, It’s being used in the medical field to check the breathing system in the human body. It helps in explaining how the air pressure within our lungs increases or decreases with respect to the volume of our lungs. This results in the difference in air pressure within our lungs and the environmental air.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
