Answer
Verified
398.7k+ views
Hint: To draw the graph of ${{\sin }^{-1}}\left( \sin x \right)$, we must know about the following concepts,
Inverse of a function means a function which returns back the original value applied on the given function. Inverse of a particular function exists if the function is bijective.i.e., for each unique value from the domain of the function, we should have a corresponding unique value from the range of the function.
Complete step-by-step solution:
For a function $f$ , if its inverse exists, then
${{f}^{-1}}\left( f\left( x \right) \right)=x\text{ where }x\in Range\text{ of }{{f}^{-1}}\left( x \right)$
Another point to be noted is
$\begin{align}
& \text{If, }\sin y=\sin x \\
& \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\
\end{align}$
Range of $y={{\sin }^{-1}}x$ $\forall x\in \left( -1,1 \right),y\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Now, let us proceed with the question,
We have, $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
Let us assume $f\left( x \right)=\theta $
$\begin{align}
& \Rightarrow {{\sin }^{-1}}\left( \sin x \right)=\theta \\
& \Rightarrow \sin x=\sin \theta \\
\end{align}$
Using,
$\begin{align}
& \text{If, }\sin y=\sin x \\
& \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\
\end{align}$
We get
$\Rightarrow \theta =n\pi +{{\left( -1 \right)}^{n}}x$
For different values of $x$ , we will get different values of $\theta $ .i.e., for different values of $x$, we will get different values of $f\left( x \right)$ .
For $n=-1$
$\theta ={{\sin }^{-1}}\left( \sin \left( -\pi -x \right) \right)$
For $\theta $ to exist,
$\begin{align}
& \dfrac{-\pi }{2}\le -\pi -x\le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}\le -x\le \dfrac{3\pi }{2} \\
& \Rightarrow \dfrac{-\pi }{2}\ge x\ge \dfrac{-3\pi }{2} \\
\end{align}$
For $n=0,$
$\theta ={{\sin }^{-1}}\left( \sin x \right)$
For $\theta $ to exist,
$\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}$
For $n=1,$
$\theta ={{\sin }^{-1}}\left( \sin \left( \pi -x \right) \right)$
For $\theta $ to exist,
$\begin{align}
& \dfrac{-\pi }{2}\le \pi -x\le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{-3\pi }{2}\le -x\le \dfrac{-\pi }{2} \\
& \Rightarrow \dfrac{3\pi }{2}\ge x\ge \dfrac{\pi }{2} \\
\end{align}$
So, we can redefine the function $f\left( x \right)$ as
$f\left( x \right)=\left\{ \begin{matrix}
& -\pi -x &\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} \\
& x & \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \\
& \pi -x & \dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\
\end{matrix} \right.$
Now, using these inequalities we will draw the graph of $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
So, for the function $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
$Domain:x\in R$
$Range:x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
The graph is periodic with a fundamental period of $2\pi $.
Note: While drawing the graph of $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$, remember that the different values of $x$ should correspond to the range of ${{\sin }^{-1}}x$ .i.e.,$x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. Here, since $x$ is the domain of $\sin x$, hence $x\in R$. This means that $\sin x\in \left( -1,1 \right)$ and hence ${{\sin }^{-1}}\left( \sin x \right)\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. So, the given function has a range of $\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ for every $x\in R$.
Inverse of a function means a function which returns back the original value applied on the given function. Inverse of a particular function exists if the function is bijective.i.e., for each unique value from the domain of the function, we should have a corresponding unique value from the range of the function.
Complete step-by-step solution:
For a function $f$ , if its inverse exists, then
${{f}^{-1}}\left( f\left( x \right) \right)=x\text{ where }x\in Range\text{ of }{{f}^{-1}}\left( x \right)$
Another point to be noted is
$\begin{align}
& \text{If, }\sin y=\sin x \\
& \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\
\end{align}$
Range of $y={{\sin }^{-1}}x$ $\forall x\in \left( -1,1 \right),y\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Now, let us proceed with the question,
We have, $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
Let us assume $f\left( x \right)=\theta $
$\begin{align}
& \Rightarrow {{\sin }^{-1}}\left( \sin x \right)=\theta \\
& \Rightarrow \sin x=\sin \theta \\
\end{align}$
Using,
$\begin{align}
& \text{If, }\sin y=\sin x \\
& \Rightarrow y=n\pi +{{\left( -1 \right)}^{n}}x \\
\end{align}$
We get
$\Rightarrow \theta =n\pi +{{\left( -1 \right)}^{n}}x$
For different values of $x$ , we will get different values of $\theta $ .i.e., for different values of $x$, we will get different values of $f\left( x \right)$ .
For $n=-1$
$\theta ={{\sin }^{-1}}\left( \sin \left( -\pi -x \right) \right)$
For $\theta $ to exist,
$\begin{align}
& \dfrac{-\pi }{2}\le -\pi -x\le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{2}\le -x\le \dfrac{3\pi }{2} \\
& \Rightarrow \dfrac{-\pi }{2}\ge x\ge \dfrac{-3\pi }{2} \\
\end{align}$
For $n=0,$
$\theta ={{\sin }^{-1}}\left( \sin x \right)$
For $\theta $ to exist,
$\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}$
For $n=1,$
$\theta ={{\sin }^{-1}}\left( \sin \left( \pi -x \right) \right)$
For $\theta $ to exist,
$\begin{align}
& \dfrac{-\pi }{2}\le \pi -x\le \dfrac{\pi }{2} \\
& \Rightarrow \dfrac{-3\pi }{2}\le -x\le \dfrac{-\pi }{2} \\
& \Rightarrow \dfrac{3\pi }{2}\ge x\ge \dfrac{\pi }{2} \\
\end{align}$
So, we can redefine the function $f\left( x \right)$ as
$f\left( x \right)=\left\{ \begin{matrix}
& -\pi -x &\dfrac{-3\pi }{2}\le x\le \dfrac{-\pi }{2} \\
& x & \dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2} \\
& \pi -x & \dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\
\end{matrix} \right.$
Now, using these inequalities we will draw the graph of $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
So, for the function $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$
$Domain:x\in R$
$Range:x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
The graph is periodic with a fundamental period of $2\pi $.
Note: While drawing the graph of $f\left( x \right)={{\sin }^{-1}}\left( \sin x \right)$, remember that the different values of $x$ should correspond to the range of ${{\sin }^{-1}}x$ .i.e.,$x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. Here, since $x$ is the domain of $\sin x$, hence $x\in R$. This means that $\sin x\in \left( -1,1 \right)$ and hence ${{\sin }^{-1}}\left( \sin x \right)\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$. So, the given function has a range of $\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$ for every $x\in R$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE