Answer
Verified
401.8k+ views
Hint: If the cars move in the same direction, they would take longer to meet each other. If they start from opposite directions, they would meet much faster. Further, in addition to this, we would use the formula below to find the speed of a car-
$speed=\dfrac{dis\tan ce}{speed}$
Complete step-by-step solution:
Let the speed of the car at A be A$\dfrac{km}{hr}$ and the other car at B be B$\dfrac{km}{hr}$. Now, from first condition (for cars going in same direction)-
Let car at A cover distance x km and car at B cover distance y km in duration of 9 hours (time when they meet). We have,
Distance = speed$\times $time
x = A$\times $9
y = B$\times $9
Now, since cars at A and B are 90 km apart and finally after 9 hours, they finally meet, car A would have to cover 90 km more than B since they travel in the same direction. Thus,
x = y+90
Plugging values of x and y,
9A=9B+90
A=B+10 -- (1)
From second condition (for cars going in opposite direction)-
Let a car at A cover distance x km and car at B cover distance y km in duration of $\dfrac{9}{7}$ hours (time when they meet). We have,
Distance = speed$\times $time
x = A$\times $ $\dfrac{9}{7}$
y = B$\times $$\dfrac{9}{7}$
Now, since cars at A and B are 90 km apart and finally after $\dfrac{9}{7}$ hours they meet, since they are travelling in opposite directions, the total distance covered by cars is 90 km. Thus,
x+y=90
A$\times $ $\dfrac{9}{7}$+ B$\times $$\dfrac{9}{7}$=90
$\dfrac{A+B}{7}$=10
A+B=70 -- (2)
Adding (1) and (2),
2A = 80
A=40$\dfrac{km}{hr}$
Putting this value in (2),
We get, B=70-A
B=30$\dfrac{km}{hr}$
Hence, the car A has a speed of 40kmph and B has a speed of 30kmph
Note: We can solve this problem by using the concept of relative speeds. Thus, if cars move in the same directions, we subtract the speeds. While the cars move in the opposite directions, we add the speeds. In this case, we use the distance as 90 km. Now, for same directions, we have,
Speed of car at A is A$\dfrac{km}{hr}$ and at B is B$\dfrac{km}{hr}$
Distance = speed$\times $time
90 = (A-B)$\times $9 (Since, they meet after 9 hours)
(A-B) = 10
A=B+10 -- (a)
Similarly, for cars travelling in opposite directions, we add the speeds, we would have,
90 = (A+B) $\times $ $\dfrac{9}{7}$
(A+B) = 70 -- (b)
Thus, we get the same equations((a) and (b)) as (1) and (2) in the solution described above. So, we would get the same answers for speeds of car at A and car at B.
Thus, we would get the same answer for A and B as we got in the solution.
$speed=\dfrac{dis\tan ce}{speed}$
Complete step-by-step solution:
Let the speed of the car at A be A$\dfrac{km}{hr}$ and the other car at B be B$\dfrac{km}{hr}$. Now, from first condition (for cars going in same direction)-
Let car at A cover distance x km and car at B cover distance y km in duration of 9 hours (time when they meet). We have,
Distance = speed$\times $time
x = A$\times $9
y = B$\times $9
Now, since cars at A and B are 90 km apart and finally after 9 hours, they finally meet, car A would have to cover 90 km more than B since they travel in the same direction. Thus,
x = y+90
Plugging values of x and y,
9A=9B+90
A=B+10 -- (1)
From second condition (for cars going in opposite direction)-
Let a car at A cover distance x km and car at B cover distance y km in duration of $\dfrac{9}{7}$ hours (time when they meet). We have,
Distance = speed$\times $time
x = A$\times $ $\dfrac{9}{7}$
y = B$\times $$\dfrac{9}{7}$
Now, since cars at A and B are 90 km apart and finally after $\dfrac{9}{7}$ hours they meet, since they are travelling in opposite directions, the total distance covered by cars is 90 km. Thus,
x+y=90
A$\times $ $\dfrac{9}{7}$+ B$\times $$\dfrac{9}{7}$=90
$\dfrac{A+B}{7}$=10
A+B=70 -- (2)
Adding (1) and (2),
2A = 80
A=40$\dfrac{km}{hr}$
Putting this value in (2),
We get, B=70-A
B=30$\dfrac{km}{hr}$
Hence, the car A has a speed of 40kmph and B has a speed of 30kmph
Note: We can solve this problem by using the concept of relative speeds. Thus, if cars move in the same directions, we subtract the speeds. While the cars move in the opposite directions, we add the speeds. In this case, we use the distance as 90 km. Now, for same directions, we have,
Speed of car at A is A$\dfrac{km}{hr}$ and at B is B$\dfrac{km}{hr}$
Distance = speed$\times $time
90 = (A-B)$\times $9 (Since, they meet after 9 hours)
(A-B) = 10
A=B+10 -- (a)
Similarly, for cars travelling in opposite directions, we add the speeds, we would have,
90 = (A+B) $\times $ $\dfrac{9}{7}$
(A+B) = 70 -- (b)
Thus, we get the same equations((a) and (b)) as (1) and (2) in the solution described above. So, we would get the same answers for speeds of car at A and car at B.
Thus, we would get the same answer for A and B as we got in the solution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE