Answer
Verified
390k+ views
Hint: Learn about the power dissipated through an AC circuit. The power dissipated from a circuit is given by the product of the voltage and current through the circuit. For an AC circuit the power dissipated is the average taken over a period of time
Formula used:
The average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
Complete step by step answer:
We have given here the voltage of the circuit is \[v = 230\sin (\omega t + \dfrac{\pi }{2})\] where, amplitude of the voltage is \[{V_0} = 230V\] , \[\omega \] is the frequency of the source applied \[\dfrac{\pi }{2}\] is the initial phase of the voltage. The current through the circuit is given by, \[I = 20\sin \omega t\] where, \[{I_0} = 20A\] is the amplitude of the current through the circuit\[\omega \] is the frequency of the source applied. So, the phase difference between the current and voltage is \[\varphi = \dfrac{\pi }{2}\].
Now, we know that the average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
So, here we have, amplitude of the voltage is \[{V_0} = 230V\] , amplitude of the current through the circuit \[{I_0} = 20A\]and phase difference between the current and the voltage is \[\varphi = \dfrac{\pi }{2}\]. Hence putting the values we have,
\[P = \dfrac{1}{2}200 \times 20 \times \cos \dfrac{\pi }{2}\]
\[\Rightarrow P = \dfrac{1}{2}200 \times 20 \times 0\]
\[\therefore P = 0\]
Hence, the average power dissipated through the circuit is \[0\,watt\].
Note: In the given circuit the maxima of voltage meets the minima of the current so the average value of the power becomes zero for a full circle. The average power dissipated through the circuit is zero does not mean that no energy is being exerted by the source in the circuit.
Formula used:
The average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
Complete step by step answer:
We have given here the voltage of the circuit is \[v = 230\sin (\omega t + \dfrac{\pi }{2})\] where, amplitude of the voltage is \[{V_0} = 230V\] , \[\omega \] is the frequency of the source applied \[\dfrac{\pi }{2}\] is the initial phase of the voltage. The current through the circuit is given by, \[I = 20\sin \omega t\] where, \[{I_0} = 20A\] is the amplitude of the current through the circuit\[\omega \] is the frequency of the source applied. So, the phase difference between the current and voltage is \[\varphi = \dfrac{\pi }{2}\].
Now, we know that the average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
So, here we have, amplitude of the voltage is \[{V_0} = 230V\] , amplitude of the current through the circuit \[{I_0} = 20A\]and phase difference between the current and the voltage is \[\varphi = \dfrac{\pi }{2}\]. Hence putting the values we have,
\[P = \dfrac{1}{2}200 \times 20 \times \cos \dfrac{\pi }{2}\]
\[\Rightarrow P = \dfrac{1}{2}200 \times 20 \times 0\]
\[\therefore P = 0\]
Hence, the average power dissipated through the circuit is \[0\,watt\].
Note: In the given circuit the maxima of voltage meets the minima of the current so the average value of the power becomes zero for a full circle. The average power dissipated through the circuit is zero does not mean that no energy is being exerted by the source in the circuit.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE