Answer
Verified
400.5k+ views
Hint: Learn about the power dissipated through an AC circuit. The power dissipated from a circuit is given by the product of the voltage and current through the circuit. For an AC circuit the power dissipated is the average taken over a period of time
Formula used:
The average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
Complete step by step answer:
We have given here the voltage of the circuit is \[v = 230\sin (\omega t + \dfrac{\pi }{2})\] where, amplitude of the voltage is \[{V_0} = 230V\] , \[\omega \] is the frequency of the source applied \[\dfrac{\pi }{2}\] is the initial phase of the voltage. The current through the circuit is given by, \[I = 20\sin \omega t\] where, \[{I_0} = 20A\] is the amplitude of the current through the circuit\[\omega \] is the frequency of the source applied. So, the phase difference between the current and voltage is \[\varphi = \dfrac{\pi }{2}\].
Now, we know that the average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
So, here we have, amplitude of the voltage is \[{V_0} = 230V\] , amplitude of the current through the circuit \[{I_0} = 20A\]and phase difference between the current and the voltage is \[\varphi = \dfrac{\pi }{2}\]. Hence putting the values we have,
\[P = \dfrac{1}{2}200 \times 20 \times \cos \dfrac{\pi }{2}\]
\[\Rightarrow P = \dfrac{1}{2}200 \times 20 \times 0\]
\[\therefore P = 0\]
Hence, the average power dissipated through the circuit is \[0\,watt\].
Note: In the given circuit the maxima of voltage meets the minima of the current so the average value of the power becomes zero for a full circle. The average power dissipated through the circuit is zero does not mean that no energy is being exerted by the source in the circuit.
Formula used:
The average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
Complete step by step answer:
We have given here the voltage of the circuit is \[v = 230\sin (\omega t + \dfrac{\pi }{2})\] where, amplitude of the voltage is \[{V_0} = 230V\] , \[\omega \] is the frequency of the source applied \[\dfrac{\pi }{2}\] is the initial phase of the voltage. The current through the circuit is given by, \[I = 20\sin \omega t\] where, \[{I_0} = 20A\] is the amplitude of the current through the circuit\[\omega \] is the frequency of the source applied. So, the phase difference between the current and voltage is \[\varphi = \dfrac{\pi }{2}\].
Now, we know that the average power dissipated from an AC circuit is given by,
\[P = \dfrac{1}{2}{V_0}{I_0}\cos \varphi \]
where, \[{V_0}\] is the amplitude of the voltage applied \[{I_0}\] is the amplitude of the current through the circuit \[\varphi \] is the phase difference between the current and the voltage.
So, here we have, amplitude of the voltage is \[{V_0} = 230V\] , amplitude of the current through the circuit \[{I_0} = 20A\]and phase difference between the current and the voltage is \[\varphi = \dfrac{\pi }{2}\]. Hence putting the values we have,
\[P = \dfrac{1}{2}200 \times 20 \times \cos \dfrac{\pi }{2}\]
\[\Rightarrow P = \dfrac{1}{2}200 \times 20 \times 0\]
\[\therefore P = 0\]
Hence, the average power dissipated through the circuit is \[0\,watt\].
Note: In the given circuit the maxima of voltage meets the minima of the current so the average value of the power becomes zero for a full circle. The average power dissipated through the circuit is zero does not mean that no energy is being exerted by the source in the circuit.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE