Answer
Verified
401.7k+ views
Hint: The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance. At resonance, the capacitive and inductive reactances are equal.
Formula used:
$\text{Power factor }\left( p.f \right)=\dfrac{\text{Resistance }\left( R \right)}{\text{Total impedance (}Z\text{)}}$
$\text{Total Impedance (}Z\text{) = }\sqrt{\left( {{R}^{2}} \right)+{{\left( {{X}_{c}}-{{X}_{L}} \right)}^{2}}}$
where ${{X}_{c}}=\text{ Capacitive reactance = }\dfrac{1}{\omega C}$
${{X}_{L}}=\text{ Inductive reactance = }\omega \text{L}$,
where $\omega =2\pi f$and $f=\text{ frequency of AC source}$ and C and L are the capacitance and the inductance in the circuit respectively.
Complete step-by-step answer:
The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power.
The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
$\text{Power factor }\left( p.f \right)=\dfrac{\text{Resistance }\left( R \right)}{\text{Total impedance (}Z\text{)}}$
$\text{Total Impedance (}Z\text{) = }\sqrt{\left( {{R}^{2}} \right)+{{\left( {{X}_{c}}-{{X}_{L}} \right)}^{2}}}$
$\therefore pf=\dfrac{R}{\sqrt{{{R}^{2}}+{{\left( {{X}_{C}}-{{X}_{L}} \right)}^{2}}}}$ ---(1)
Where ${{X}_{c}}=\text{ Capacitive reactance = }\dfrac{1}{\omega C}$
${{X}_{L}}=\text{ Inductive reactance = }\omega \text{L}$,
where $\omega =2\pi f$and $f=\text{ frequency of AC source}$ and C and L are the capacitance and the inductance in the circuit respectively.
At resonance, the frequency is such that ${{X}_{C}}={{X}_{L}}$
$\therefore \dfrac{1}{\omega C}=L\omega $
$\therefore \omega =\dfrac{1}{\sqrt{LC}}$
${{X}_{C}}-{{X}_{L}}=0$ --(2)
Using (1) and (2),
$pf=\dfrac{R}{\sqrt{{{R}^{2}}+0}}=\dfrac{R}{\sqrt{{{R}^{2}}}}=\dfrac{R}{R}=1$
Therefore, the power factor of an LCR circuit at resonance is 1.
Note: At resonance, the LCR circuit behaves like a purely resistive circuit and the effects of the capacitor and inductor cancel each other out. This is the most efficient circuit for operation. Thus, many electric companies even give incentives to commercial entities if they have a power factor very close to 1.
Formula used:
$\text{Power factor }\left( p.f \right)=\dfrac{\text{Resistance }\left( R \right)}{\text{Total impedance (}Z\text{)}}$
$\text{Total Impedance (}Z\text{) = }\sqrt{\left( {{R}^{2}} \right)+{{\left( {{X}_{c}}-{{X}_{L}} \right)}^{2}}}$
where ${{X}_{c}}=\text{ Capacitive reactance = }\dfrac{1}{\omega C}$
${{X}_{L}}=\text{ Inductive reactance = }\omega \text{L}$,
where $\omega =2\pi f$and $f=\text{ frequency of AC source}$ and C and L are the capacitance and the inductance in the circuit respectively.
Complete step-by-step answer:
The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power.
The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
$\text{Power factor }\left( p.f \right)=\dfrac{\text{Resistance }\left( R \right)}{\text{Total impedance (}Z\text{)}}$
$\text{Total Impedance (}Z\text{) = }\sqrt{\left( {{R}^{2}} \right)+{{\left( {{X}_{c}}-{{X}_{L}} \right)}^{2}}}$
$\therefore pf=\dfrac{R}{\sqrt{{{R}^{2}}+{{\left( {{X}_{C}}-{{X}_{L}} \right)}^{2}}}}$ ---(1)
Where ${{X}_{c}}=\text{ Capacitive reactance = }\dfrac{1}{\omega C}$
${{X}_{L}}=\text{ Inductive reactance = }\omega \text{L}$,
where $\omega =2\pi f$and $f=\text{ frequency of AC source}$ and C and L are the capacitance and the inductance in the circuit respectively.
At resonance, the frequency is such that ${{X}_{C}}={{X}_{L}}$
$\therefore \dfrac{1}{\omega C}=L\omega $
$\therefore \omega =\dfrac{1}{\sqrt{LC}}$
${{X}_{C}}-{{X}_{L}}=0$ --(2)
Using (1) and (2),
$pf=\dfrac{R}{\sqrt{{{R}^{2}}+0}}=\dfrac{R}{\sqrt{{{R}^{2}}}}=\dfrac{R}{R}=1$
Therefore, the power factor of an LCR circuit at resonance is 1.
Note: At resonance, the LCR circuit behaves like a purely resistive circuit and the effects of the capacitor and inductor cancel each other out. This is the most efficient circuit for operation. Thus, many electric companies even give incentives to commercial entities if they have a power factor very close to 1.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
Why is the cell called the structural and functional class 12 biology CBSE
Why dont two magnetic lines of force intersect with class 12 physics CBSE
How many sp2 and sp hybridized carbon atoms are present class 12 chemistry CBSE