Answer
Verified
436.2k+ views
Hint : Power factor is the ratio of active power and apparent power. Reactive power of LCR combination is the difference between capacitive and inductive power. At resonance, capacitive and inductive reactances are equal.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where , $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
$\Rightarrow {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
Complete step by step answer
Power factor is also the ratio of resistance of LCR circuit to its impedance. The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power. The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
We know that, $ P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
At resonance, $ {X_C} = {X_L} $ .
We know, $ {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
$\Rightarrow \dfrac{1}{{\omega C}} = \omega L $
$ \Rightarrow \omega = \sqrt {\dfrac{1}{{LC}}} $
Since, $ {X_C} = {X_L} $ , thus $ {X_C} - {X_L} = 0 $ .
Total impedance $ Z $ is thus, $ Z = \sqrt {{R^2} + 0} $
$ \Rightarrow Z = R. $
To find the power factor,
$\Rightarrow P.F. = \dfrac{R}{Z} = 1 $ .
$ \therefore $ The power factor at resonance is 1.
Note
The voltage across the inductor and capacitor cancel each other. The total impedance of the circuit is only due to the resistor. The phase angle between voltage and current is zero.
$\Rightarrow \cos \varphi = \dfrac{R}{Z} = \dfrac{R}{R} = 1. $ The power factor is unity.
Formula Used: The formulae used in the solution are given here.
$\Rightarrow P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where , $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
$\Rightarrow {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
Complete step by step answer
Power factor is also the ratio of resistance of LCR circuit to its impedance. The power factor of an LCR circuit is the ratio of the resistance to the total impedance of the circuit. The total impedance consists of the magnitude of the phasor sum of the resistance, the capacitive reactance and the inductive reactance.
The power factor is a measure of the fraction of total power that is being used up or dissipated by a load resistor. Since, capacitors and inductors do not dissipate power but keep on exchanging them between the source and themselves, they do not utilize the power. The higher the power factor, the better it is for energy efficiency as a greater fraction of the power is available for utilization.
We know that, $ P.F. = \dfrac{R}{Z} $ where $ P.F. $ is the power factor, $ R $ is the reactance and $ Z $ is the total impedance.
$\Rightarrow Z = \sqrt {{R^2} + \left( {{X_C} - {X_L}} \right)} $ where $ R $ is the reactance and $ Z $ is the total impedance and $ {X_C} $ is the capacitive reactance and $ {X_L} $ is the inductive reactance.
At resonance, $ {X_C} = {X_L} $ .
We know, $ {X_C} = \dfrac{1}{{\omega C}} $ where $ C $ is the capacitance and $ {X_L} = \omega L $ where $ L $ is the inductance.
$\Rightarrow \omega = 2\pi f $ where $ f $ is the frequency of AC source.
$\Rightarrow \dfrac{1}{{\omega C}} = \omega L $
$ \Rightarrow \omega = \sqrt {\dfrac{1}{{LC}}} $
Since, $ {X_C} = {X_L} $ , thus $ {X_C} - {X_L} = 0 $ .
Total impedance $ Z $ is thus, $ Z = \sqrt {{R^2} + 0} $
$ \Rightarrow Z = R. $
To find the power factor,
$\Rightarrow P.F. = \dfrac{R}{Z} = 1 $ .
$ \therefore $ The power factor at resonance is 1.
Note
The voltage across the inductor and capacitor cancel each other. The total impedance of the circuit is only due to the resistor. The phase angle between voltage and current is zero.
$\Rightarrow \cos \varphi = \dfrac{R}{Z} = \dfrac{R}{R} = 1. $ The power factor is unity.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE