\[PQ\] is a double ordinate of a parabola. Find the locus of its point of trisection.
Answer
Verified
506.7k+ views
Hint: Use the section formula
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
We know that \[PQ\] is double ordinate of given parabola.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE