Answer
Verified
401.7k+ views
Hint: For the right angled triangle, we have to use Pythagoras theorem to get the desired solution.
From the given information, if we draw a triangle it is similar to the figure below.
In $\vartriangle PMR,$ by Pythagoras theorem,
${\left( {PR} \right)^2} = {\left( {PM} \right)^2} + {\left( {RM} \right)^2}$ .... (1)
In $\vartriangle PMQ,$by Pythagoras theorem,
${\left( {PQ} \right)^2} = {\left( {PM} \right)^2} + {\left( {MQ} \right)^2}$ .... (2)
In $\vartriangle PQR,$ by Pythagoras theorem,
${\left( {RQ} \right)^2} = {\left( {RP} \right)^2} + {\left( {PQ} \right)^2}$ .... (3)
$\therefore {\left( {RM + MQ} \right)^2} = {\left( {RP} \right)^2} + {\left( {PQ} \right)^2}$
$\therefore {\left( {RM + MQ} \right)^2} + 2RM \cdot MQ = {(RP)^2} + {(PQ)^2}$ .... (4)
Adding equation (1) and (2) we get,
${\left( {PR} \right)^2} + {\left( {PQ} \right)^2} = 2{\left( {PM} \right)^2} + {\left( {RM} \right)^2} + {\left( {MQ} \right)^2}$ .... (5)
From equations (4) and (5), we get
$2RM \cdot MQ = 2{\left( {PM} \right)^2}$
$\therefore {\left( {PM} \right)^2} = RM.MQ$
Hence proved.
Note:If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other. If two triangles are similar, then the ratio of their corresponding sides are equal.
From the given information, if we draw a triangle it is similar to the figure below.
In $\vartriangle PMR,$ by Pythagoras theorem,
${\left( {PR} \right)^2} = {\left( {PM} \right)^2} + {\left( {RM} \right)^2}$ .... (1)
In $\vartriangle PMQ,$by Pythagoras theorem,
${\left( {PQ} \right)^2} = {\left( {PM} \right)^2} + {\left( {MQ} \right)^2}$ .... (2)
In $\vartriangle PQR,$ by Pythagoras theorem,
${\left( {RQ} \right)^2} = {\left( {RP} \right)^2} + {\left( {PQ} \right)^2}$ .... (3)
$\therefore {\left( {RM + MQ} \right)^2} = {\left( {RP} \right)^2} + {\left( {PQ} \right)^2}$
$\therefore {\left( {RM + MQ} \right)^2} + 2RM \cdot MQ = {(RP)^2} + {(PQ)^2}$ .... (4)
Adding equation (1) and (2) we get,
${\left( {PR} \right)^2} + {\left( {PQ} \right)^2} = 2{\left( {PM} \right)^2} + {\left( {RM} \right)^2} + {\left( {MQ} \right)^2}$ .... (5)
From equations (4) and (5), we get
$2RM \cdot MQ = 2{\left( {PM} \right)^2}$
$\therefore {\left( {PM} \right)^2} = RM.MQ$
Hence proved.
Note:If a perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other. If two triangles are similar, then the ratio of their corresponding sides are equal.
Recently Updated Pages
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE