Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Pressure exerted by liquid depends on
A. Depth of liquid
B. Gravity
C. Density of liquid
D. All of these

seo-qna
SearchIcon
Answer
VerifiedVerified
475.8k+ views
Hint: Pressure inside a fluid relies just upon the density of the fluid, speeding up because of gravity, and the depth inside the fluid. The pressure applied by such static fluid increments directly with expanding depth.

Complete step-by-step answer:
The correct answer is D.

The pressure applied by a static fluid relies just upon the depth, density of the fluid, and the increasing speed because of gravity which gives the articulation for pressure as a component of depth inside an incompressible, static fluid just as the inference of this condition from the pressure as a proportion of energy for each unit volume (ρ is the density of the gas, g is the quickening because of gravity, and h is the depth of the fluid).

For some random fluid with steady density all over in the system increases the pressure with expanding depth. For instance, an individual submerged at a depth of $h_1$ will encounter a large portion of the pressure as an individual submerged at a depth of $h_2$ = 2$h_1$.

For some fluids, the density can be considered to be almost steady all through the volume of fluid and, for all intents and purposes every single down to earth application and also the quickening because of gravity (g = 9.81 m/$s^2$).

Note: Thus, the pressure inside a fluid is hence a component of depth just, with the pressure expanding at a straight rate as for expanding depth. In down to earth applications including estimation of pressure as an element of depth, a significant qualification must be made regarding whether the supreme or relative pressure inside a fluid is wanted, $h_2$ gives the pressure applied by a fluid comparative with environmental pressure, yet in the event that the supreme pressure is wanted, the air pressure should then be added to the pressure applied by the fluid alone.