Answer
Verified
483.3k+ views
Hint:-Probability is the number of ways of achieving success upon the total number of possible outcomes.In a leap year we have 366 days, therefore it will have 52 weeks and 2 days. The sample space of having Sunday or chances of having Sunday on those two days are written which gives a favourable number of outcomes and total number of sample space of two days gives total number of outcomes. Then the ratio of favourable outcomes and total number of outcomes gives probability.
Complete step-by-step answer:
A leap year has 366 days.
Therefore, it will have 52 weeks and 2 days.
These 2 days may be:-
1. Sunday and Monday
2. Monday and Tuesday
3. Tuesday and Wednesday
4. Wednesday and Thursday
5. Thursday and Friday
6. Friday and Saturday
7. Saturday and Sunday
So, there are seven possibilities.
Out of these seven possibilities, two of them favor the event that one of the two days is a Sunday.
We know that the formula to find probability is NUMBER OF FAVORABLE OUTCOMES UPON TOTAL NUMBER OF POSSIBLE OUTCOMES
Therefore, as the number of total possible outcomes is seven and the number of favorable outcomes is two, thus, the probability that a leap year has 53 Sundays is \[\dfrac{2}{7}\].
Hence, the answer of this question is C
\[\dfrac{2}{7}\] .
NOTE:-
One must always remember that the formula to calculate the probability is:-
\[=~\dfrac{favorable\ outcomes}{total\ outcomes}\]
The student should know the formulas and definitions of probability and also knowledge of finding the sample space for a given question.
Complete step-by-step answer:
A leap year has 366 days.
Therefore, it will have 52 weeks and 2 days.
These 2 days may be:-
1. Sunday and Monday
2. Monday and Tuesday
3. Tuesday and Wednesday
4. Wednesday and Thursday
5. Thursday and Friday
6. Friday and Saturday
7. Saturday and Sunday
So, there are seven possibilities.
Out of these seven possibilities, two of them favor the event that one of the two days is a Sunday.
We know that the formula to find probability is NUMBER OF FAVORABLE OUTCOMES UPON TOTAL NUMBER OF POSSIBLE OUTCOMES
Therefore, as the number of total possible outcomes is seven and the number of favorable outcomes is two, thus, the probability that a leap year has 53 Sundays is \[\dfrac{2}{7}\].
Hence, the answer of this question is C
\[\dfrac{2}{7}\] .
NOTE:-
One must always remember that the formula to calculate the probability is:-
\[=~\dfrac{favorable\ outcomes}{total\ outcomes}\]
The student should know the formulas and definitions of probability and also knowledge of finding the sample space for a given question.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE