Answer
Verified
468.3k+ views
Hint: It is sometimes useful to write a vector $v$ in terms of its magnitude and argument rather than rectangular form \[a\widehat i + b\widehat j\]. This is done using the sine and cosine functions. The \[r(\cos \alpha \widehat i + \sin \alpha \widehat j)\] version of $v$ is called trigonometric form. Since \[\,\left| {\cos \alpha \widehat i + \sin \alpha \widehat j} \right| = 1\] the trigonometric form expresses $v$ as a scalar multiple of a unit vector in the same direction as $v$.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Complete step by step solution:
Consider a unit circle.
Draw two-unit vectors \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \] with an angle of
\[
\angle POX = \alpha \\
\angle QOX = \beta \\
\angle POQ = \alpha - \beta \\
\]
\[
\left| {\overrightarrow {OP} } \right| = 1 \\
\left| {\overrightarrow {OQ} } \right| = 1 \\
\]
Now as we have described in hint:0
\[
\overrightarrow {OP} = \cos \alpha \widehat i + \sin \alpha \widehat j \ldots \ldots (1) \\
\overrightarrow {OQ} = \cos \beta \widehat i + \sin \beta \widehat j \ldots \ldots (2) \\
\]
The scalar product \[\overrightarrow {OP} \]and \[\overrightarrow {OQ} \]of two vectors \[\overrightarrow {OP} \] and \[\overrightarrow {OQ} \] is a number defined by the equation
\[\overrightarrow {OP} \cdot \overrightarrow {OQ} = \left| {\overrightarrow {OP} } \right|\left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right) = \cos \left( {\alpha - \beta } \right) \ldots \ldots (3)\]
where \[\alpha \]and \[\beta \] is the angle between the vectors.
Also from equation (1) and (2)
\[
\overrightarrow {OQ} = \left( {\cos \alpha \widehat i + \sin \alpha \widehat j} \right)\left( {\cos \beta \widehat i + \sin \beta \widehat j} \right) \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \cos \beta \widehat i + \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i + \sin \alpha \widehat j \cdot \sin \beta \widehat j \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \widehat i \cdot \sin \beta \widehat j + \sin \alpha \widehat j \cdot \cos \beta \widehat i \\
\Rightarrow \overrightarrow {OP} \cdot \overrightarrow {OQ} = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \ldots \ldots (4) \\
\]
So with the equation (3) and (4)
\[ \Rightarrow \cos \left( {\alpha - \beta } \right) = \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta \]
Hence Proved.
Note:
Sometimes people forget when to use sin or cos for calculating vector components. It is important to note that the dot product always results in a scalar value. Furthermore, the dot symbol “.” always refers to a dot product of two vectors, not traditional multiplication of two scalars as we have previously known.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE