Answer
Verified
468.9k+ views
Hint: Here we use the property of trigonometry \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\] to solve first part of the equation and then we group together two pairs of values in cos on which we apply the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\].
Complete step-by-step answer:
First we solve \[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}}\]by using the identity \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\]
Where \[A = \dfrac{\pi }{{13}},B = \dfrac{{9\pi }}{{13}}\]
So, by substituting the values we can write.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}) + \cos (\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}})\]
Take LCM of the angles within the bracket.
\[
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{\pi + 9\pi }}{{13}}) + \cos (\dfrac{{\pi - 9\pi }}{{13}}) \\
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{ - 8\pi }}{{13}}) \\
\]
Since we know cosine is an even function, which means that \[\cos ( - x) = \cos (x)\]
Here value of \[x = - \dfrac{{8\pi }}{{13}}\]
So, substitute the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = \cos (\dfrac{{8\pi }}{{13}})\]in the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{8\pi }}{{13}})\] … (i)
Now we substitute the value from equation (i) on the left hand side of the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\] … (ii)
Now we use the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\]in two separate pairs.
We make pairs such that when we add the numerator it gets cancelled by the denominator and gives us an angle whose cosine is known to us.
We make a pair of \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\]and other pair of \[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\]
First we solve \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\], where \[A = \dfrac{{10\pi }}{{13}},B = \dfrac{{3\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} - \dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi - 3\pi }}{{13}}}}{2}} \right) \\
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{7\pi }}{{13}}}}{2}} \right) \\
\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{7\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{7\pi }}{{26}}} \right) = 0\] … (iii)
Now we solve\[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\], where \[A = \dfrac{{8\pi }}{{13}},B = \dfrac{{5\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} + \dfrac{{5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi + 5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right)\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0\] … (iv)
Now we substitute the values from equation (iii) and (iv) in equation (ii)
\[ \Rightarrow \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0 + 0 = 0\]
which is equal to the right hand side of the equation.
Hence Proved.
Note: Students many times make mistake of writing the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = - \cos (\dfrac{{8\pi }}{{13}})\] because they think that negative sign comes out of the angle which is wrong, we always classify if the function is an odd or even function and then find if sign vanishes or comes out. In this case cosine is an even function, so negative sign vanishes.
Complete step-by-step answer:
First we solve \[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}}\]by using the identity \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\]
Where \[A = \dfrac{\pi }{{13}},B = \dfrac{{9\pi }}{{13}}\]
So, by substituting the values we can write.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}) + \cos (\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}})\]
Take LCM of the angles within the bracket.
\[
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{\pi + 9\pi }}{{13}}) + \cos (\dfrac{{\pi - 9\pi }}{{13}}) \\
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{ - 8\pi }}{{13}}) \\
\]
Since we know cosine is an even function, which means that \[\cos ( - x) = \cos (x)\]
Here value of \[x = - \dfrac{{8\pi }}{{13}}\]
So, substitute the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = \cos (\dfrac{{8\pi }}{{13}})\]in the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{8\pi }}{{13}})\] … (i)
Now we substitute the value from equation (i) on the left hand side of the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\] … (ii)
Now we use the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\]in two separate pairs.
We make pairs such that when we add the numerator it gets cancelled by the denominator and gives us an angle whose cosine is known to us.
We make a pair of \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\]and other pair of \[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\]
First we solve \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\], where \[A = \dfrac{{10\pi }}{{13}},B = \dfrac{{3\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} - \dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi - 3\pi }}{{13}}}}{2}} \right) \\
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{7\pi }}{{13}}}}{2}} \right) \\
\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{7\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{7\pi }}{{26}}} \right) = 0\] … (iii)
Now we solve\[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\], where \[A = \dfrac{{8\pi }}{{13}},B = \dfrac{{5\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} + \dfrac{{5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi + 5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right)\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0\] … (iv)
Now we substitute the values from equation (iii) and (iv) in equation (ii)
\[ \Rightarrow \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0 + 0 = 0\]
which is equal to the right hand side of the equation.
Hence Proved.
Note: Students many times make mistake of writing the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = - \cos (\dfrac{{8\pi }}{{13}})\] because they think that negative sign comes out of the angle which is wrong, we always classify if the function is an odd or even function and then find if sign vanishes or comes out. In this case cosine is an even function, so negative sign vanishes.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE