Answer
Verified
469.2k+ views
Hint: Here in this question we must know the following properties and identities of trigonometric functions.
They are mentioned below: -
$\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}}$
Conversion of radian into degree is done by multiplying that angle by $\dfrac{{180}}{\pi }$
$\cos (A - B) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
First of all we will convert the angle which is given in radian into degree so that the calculation part can become a little less confusing.
$\cot \dfrac{\pi }{4} = \cot (\dfrac{\pi }{4} \times \dfrac{{180}}{\pi })$
$ \Rightarrow \cot \dfrac{{180}}{4} = \cot 7.5 = \cot \dfrac{{15}}{2}$
Now we will apply $\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}}$ identity so that fractional part can be eliminated. $\cot \dfrac{{15}}{2} = \dfrac{{(1 + \cos 2 \times \dfrac{{15}}{2})}}{{\sin 2 \times \dfrac{{15}}{2}}}$
$ \Rightarrow \dfrac{{(1 + \cos 15)}}{{\sin 15}}$ (Cancelling 2 from numerator and denominator)
For finding the value of $\cos 15$ we know that $\cos 15 = \cos (45 - 30)$ so applying identity $\cos (A - B) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \cos (45 - 30) = \cos 45\cos 30 + \sin 45\sin 30$ (Here A=45 and B=30)
$ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$ (Putting values of trigonometric functions)
$ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$ (Taking L.C.M)
$ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$ (Rationalising by multiplying and dividing $\sqrt 2 $)
$ \Rightarrow \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{{2 \times 2}} = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}$
$\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}$
Now putting value of $\cos 15$in $\dfrac{{(1 + \cos 15)}}{{\sin 15}}$
$ \Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}}$
For $\sin 15$ we will use $\cos 15$ because $\cos \theta = \dfrac{b}{h}$and \[\sin \theta = \dfrac{p}{h}\]where p=perpendicular, b=base and h=hypotenuse.
$\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4} = \dfrac{b}{h}$0
\[h = \sqrt {{p^2} + {b^2}} \](By Pythagoras theorem)
\[ \Rightarrow p = \sqrt {{h^2} - {b^2}} \]
\[ \Rightarrow p = \sqrt {{4^2} - {{[\sqrt 2 (\sqrt 3 + 1])}^2}} \]
Further simplifying we will get
\[ \Rightarrow p = \sqrt {16 - [2{{(3 + 1 + 2\sqrt 3 ]}^2})} \] (Expanding\[{(a + b)^2} = {a^2} + {b^2} + 2ab\])
\[ \Rightarrow p = \sqrt {16 - [2(4 + 2\sqrt 3 ])} \]
\[ \Rightarrow p = \sqrt {16 - [8 + 4\sqrt 3 ]} \] (Multiplying 2 inside)
\[ \Rightarrow p = \sqrt {16 - 8 - 4\sqrt 3 } \]
\[ \Rightarrow p = \sqrt {8 - 4\sqrt 3 } \] (Taking 4 outside the root)
\[\therefore p = 2\sqrt {2 - \sqrt 3 } \]
\[ \Rightarrow p = \dfrac{{2\sqrt {2 - \sqrt 3 } }}{4}\]Or $\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}$ because square root of \[\sqrt {2 - \sqrt 3 } \] is $\dfrac{{(\sqrt 3 - 1)}}{{\sqrt 2 }}$
You can directly write sine value from cosine value without doing so much of calculation by just making a sign opposite.
Now putting values of $\sin 15$ in $\dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}}$ we will get
$ \Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}}$
$ \Rightarrow \dfrac{{(\dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}}$ (Cancelling 4 from both denominator terms)\[ \Rightarrow \dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{{\sqrt 2 (\sqrt 3 - 1)}} = \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }}\]
Now rationalising the denominator irrational term
\[ \Rightarrow \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }} \times \dfrac{{\sqrt 6 + \sqrt 2 }}{{\sqrt 6 + \sqrt 2 }}\]\[ \Rightarrow \dfrac{{(4 + \sqrt 6 + \sqrt 2 )(\sqrt 6 + \sqrt 2 )}}{{6 - 2}} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 6 + \sqrt 6 \times \sqrt 2 + \sqrt 6 \times \sqrt 2 + 2}}{4}\]\[ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(\sqrt {12} )}}{4} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(2\sqrt 3 )}}{4}\]\[ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 4\sqrt 3 }}{4} = \sqrt 6 + \sqrt 2 + 2 + \sqrt 3 \]
\[\therefore \sqrt 6 + \sqrt 2 + \sqrt 4 + \sqrt 3 \] (2 can be written as $\sqrt 4 $)
Therefore $\cot \dfrac{\pi }{4} = \sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $
Hence proved.
Note: Students should know basic values of trigonometric functions which can boost their calculation part some of the values are as follows: -
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {30^ \circ } = \dfrac{1}{2}$
$\cos {60^ \circ } = \dfrac{1}{2},\sin {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$
\[\cos {90^ \circ } = 0,\sin {90^ \circ } = 1\]
$\cos {180^ \circ } = 1,\sin {180^ \circ } = 0$
Also while doing rationalisation some students make mistakes by multiplying with the same term but that is not correct. The same term with opposite signs should be multiplied and divided.
They are mentioned below: -
$\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}}$
Conversion of radian into degree is done by multiplying that angle by $\dfrac{{180}}{\pi }$
$\cos (A - B) = \cos A\cos B + \sin A\sin B$
Complete step-by-step answer:
First of all we will convert the angle which is given in radian into degree so that the calculation part can become a little less confusing.
$\cot \dfrac{\pi }{4} = \cot (\dfrac{\pi }{4} \times \dfrac{{180}}{\pi })$
$ \Rightarrow \cot \dfrac{{180}}{4} = \cot 7.5 = \cot \dfrac{{15}}{2}$
Now we will apply $\cot A = \dfrac{{(1 + \cos 2A)}}{{\sin 2A}}$ identity so that fractional part can be eliminated. $\cot \dfrac{{15}}{2} = \dfrac{{(1 + \cos 2 \times \dfrac{{15}}{2})}}{{\sin 2 \times \dfrac{{15}}{2}}}$
$ \Rightarrow \dfrac{{(1 + \cos 15)}}{{\sin 15}}$ (Cancelling 2 from numerator and denominator)
For finding the value of $\cos 15$ we know that $\cos 15 = \cos (45 - 30)$ so applying identity $\cos (A - B) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow \cos (45 - 30) = \cos 45\cos 30 + \sin 45\sin 30$ (Here A=45 and B=30)
$ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$ (Putting values of trigonometric functions)
$ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$ (Taking L.C.M)
$ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$ (Rationalising by multiplying and dividing $\sqrt 2 $)
$ \Rightarrow \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{{2 \times 2}} = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}$
$\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4}$
Now putting value of $\cos 15$in $\dfrac{{(1 + \cos 15)}}{{\sin 15}}$
$ \Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}}$
For $\sin 15$ we will use $\cos 15$ because $\cos \theta = \dfrac{b}{h}$and \[\sin \theta = \dfrac{p}{h}\]where p=perpendicular, b=base and h=hypotenuse.
$\therefore \cos 15 = \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4} = \dfrac{b}{h}$0
\[h = \sqrt {{p^2} + {b^2}} \](By Pythagoras theorem)
\[ \Rightarrow p = \sqrt {{h^2} - {b^2}} \]
\[ \Rightarrow p = \sqrt {{4^2} - {{[\sqrt 2 (\sqrt 3 + 1])}^2}} \]
Further simplifying we will get
\[ \Rightarrow p = \sqrt {16 - [2{{(3 + 1 + 2\sqrt 3 ]}^2})} \] (Expanding\[{(a + b)^2} = {a^2} + {b^2} + 2ab\])
\[ \Rightarrow p = \sqrt {16 - [2(4 + 2\sqrt 3 ])} \]
\[ \Rightarrow p = \sqrt {16 - [8 + 4\sqrt 3 ]} \] (Multiplying 2 inside)
\[ \Rightarrow p = \sqrt {16 - 8 - 4\sqrt 3 } \]
\[ \Rightarrow p = \sqrt {8 - 4\sqrt 3 } \] (Taking 4 outside the root)
\[\therefore p = 2\sqrt {2 - \sqrt 3 } \]
\[ \Rightarrow p = \dfrac{{2\sqrt {2 - \sqrt 3 } }}{4}\]Or $\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}$ because square root of \[\sqrt {2 - \sqrt 3 } \] is $\dfrac{{(\sqrt 3 - 1)}}{{\sqrt 2 }}$
You can directly write sine value from cosine value without doing so much of calculation by just making a sign opposite.
Now putting values of $\sin 15$ in $\dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\sin 15}}$ we will get
$ \Rightarrow \dfrac{{(1 + \dfrac{{\sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}}$
$ \Rightarrow \dfrac{{(\dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{4})}}{{\dfrac{{\sqrt 2 (\sqrt 3 - 1)}}{4}}}$ (Cancelling 4 from both denominator terms)\[ \Rightarrow \dfrac{{4 + \sqrt 2 (\sqrt 3 + 1)}}{{\sqrt 2 (\sqrt 3 - 1)}} = \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }}\]
Now rationalising the denominator irrational term
\[ \Rightarrow \dfrac{{4 + \sqrt 6 + \sqrt 2 }}{{\sqrt 6 - \sqrt 2 }} \times \dfrac{{\sqrt 6 + \sqrt 2 }}{{\sqrt 6 + \sqrt 2 }}\]\[ \Rightarrow \dfrac{{(4 + \sqrt 6 + \sqrt 2 )(\sqrt 6 + \sqrt 2 )}}{{6 - 2}} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 6 + \sqrt 6 \times \sqrt 2 + \sqrt 6 \times \sqrt 2 + 2}}{4}\]\[ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(\sqrt {12} )}}{4} = \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 2(2\sqrt 3 )}}{4}\]\[ \Rightarrow \dfrac{{4\sqrt 6 + 4\sqrt 2 + 8 + 4\sqrt 3 }}{4} = \sqrt 6 + \sqrt 2 + 2 + \sqrt 3 \]
\[\therefore \sqrt 6 + \sqrt 2 + \sqrt 4 + \sqrt 3 \] (2 can be written as $\sqrt 4 $)
Therefore $\cot \dfrac{\pi }{4} = \sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $
Hence proved.
Note: Students should know basic values of trigonometric functions which can boost their calculation part some of the values are as follows: -
$\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {30^ \circ } = \dfrac{1}{2}$
$\cos {60^ \circ } = \dfrac{1}{2},\sin {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$
$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$
\[\cos {90^ \circ } = 0,\sin {90^ \circ } = 1\]
$\cos {180^ \circ } = 1,\sin {180^ \circ } = 0$
Also while doing rationalisation some students make mistakes by multiplying with the same term but that is not correct. The same term with opposite signs should be multiplied and divided.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE