Answer
Verified
468.9k+ views
Hint: For proving \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\], we divide the LHS part of the equation by $\sin A$ and convert this into $\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$ and now we substitute identity in place of 1 i.e. $\cos e{c^2}A - {\cot ^2}A = 1$ in numerator after this we apply an identity in the numerator i.e. ${a^2} - {b^2} = (a + b)(a - b)$ after applying this identity we get terms as $\dfrac{{(\cos ecA + \cot A)(1 - \cos ecA + \cot A)}}{{\cot A + 1 - \cos ecA}}$ and we cancel out the like terms and we got our answer which is equal to the RHS.
Complete step-by-step answer:
By taking LHS \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and we divide each term of numerator and denominator by $\sin A$.
We get,
\[\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
After solving we get the equation as,
$\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, in numerator in place of 1 we insert an identity which is,
$\cos e{c^2}A - {\cot ^2}A = 1$
We get the result as,
$\dfrac{{\cot A - (\cos e{c^2}A - {{\cot }^2}A) + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, we put an algebraic identity which is
${a^2} - {b^2} = (a + b)(a - b)$ where, $a = \cos ecA,b = \cot A$
We get,
\[\dfrac{{\cos ecA + \cot A - [(\cos ecA + \cot A)(\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
Now by taking $(\cos ecA + \cot A)$ we get the equation as,
\[\dfrac{{(\cos ecA + \cot A)[1 - (\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
By solving bracket we get
\[\]\[\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}\]
By eliminating the like terms i.e. \[\cot A + 1 - \cos ecA\]
We get,
\[\cos ecA + \cot A\]
=RHS
Hence Proved
Note: Alternate Method to solve the above question
By taking LHS
\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
And by dividing both numerator and denominator by \[\cos A + \sin A - 1\]
We get,
=\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}} \times \dfrac{{\cos A + (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
By applying identities (i) ${a^2} - {b^2} = (a + b)(a - b)$ in numerator, (ii) ${(a + b)^2} = {a^2} + {b^2} + 2ab$ in denominator
We get,
=\[\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{[\cos A + (\sin A - 1)]}^2}}}\]
=$\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{\cos }^2}A + {{(\sin A - 1)}^2} + 2\cos A \times (\sin A - 1)}}$
Now we apply identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$ on $\sin A - 1$ in both numerator and denominator
We get,
=$\dfrac{{{{\cos }^2}A - ({{\sin }^2}A + 1 - 2\sin A)}}{{{{\cos }^2}A + {{\sin }^2}A + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}$
As, \[{\cos ^2}A + {\sin ^2}A = 1\]
=\[\dfrac{{{{\cos }^2}A - {{\sin }^2}A - 1 + 2\sin A}}{{1 + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - (1 - {{\cos }^2}A) - 1 + 2\sin A}}{{2 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - 1 + {{\cos }^2}A - 1 + 2\sin A}}{{2(1 - \sin A) + 2\cos A(\sin A - 1)}}\]
=\[\dfrac{{2{{\cos }^2}A - 2 + 2\sin A}}{{2(1 - \sin A) - 2\cos A(1 - \sin A)}}\]
Taking (-2) common from numerator and \[2(1 - \sin A)\] common from denominator
We get
=\[\dfrac{{ - 2(1 - {{\cos }^2}A - \sin A)}}{{2(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{ - ({{\sin }^2}A - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
Taking $\sin A$ common in numerator we get,
=\[\dfrac{{ - \sin A(\sin A - 1)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A(1 - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}}\]
Now multiply and divide numerator and denominator by \[(1 + \cos A)\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}} \times \dfrac{{(1 + \cos A)}}{{(1 + \cos A)}}\]
We get
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{1 - {{\cos }^2}A}}\]
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{{{\sin }^2}A}}\]
We get
=\[\dfrac{{1 + \cos A}}{{\sin A}}\]
i.e. \[\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
=$\cos ecA + \cot A$
=RHS
Complete step-by-step answer:
By taking LHS \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and we divide each term of numerator and denominator by $\sin A$.
We get,
\[\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}\]
After solving we get the equation as,
$\dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, in numerator in place of 1 we insert an identity which is,
$\cos e{c^2}A - {\cot ^2}A = 1$
We get the result as,
$\dfrac{{\cot A - (\cos e{c^2}A - {{\cot }^2}A) + \cos ecA}}{{\cot A + 1 - \cos ecA}}$
Now, we put an algebraic identity which is
${a^2} - {b^2} = (a + b)(a - b)$ where, $a = \cos ecA,b = \cot A$
We get,
\[\dfrac{{\cos ecA + \cot A - [(\cos ecA + \cot A)(\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
Now by taking $(\cos ecA + \cot A)$ we get the equation as,
\[\dfrac{{(\cos ecA + \cot A)[1 - (\cos ecA - \cot A)]}}{{\cot A + 1 - \cos ecA}}\]
By solving bracket we get
\[\]\[\dfrac{{(\cos ecA + \cot A)[\cot A + 1 - \cos ecA]}}{{\cot A + 1 - \cos ecA}}\]
By eliminating the like terms i.e. \[\cot A + 1 - \cos ecA\]
We get,
\[\cos ecA + \cot A\]
=RHS
Hence Proved
Note: Alternate Method to solve the above question
By taking LHS
\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
And by dividing both numerator and denominator by \[\cos A + \sin A - 1\]
We get,
=\[\dfrac{{\cos A - (\sin A - 1)}}{{\cos A + (\sin A - 1)}} \times \dfrac{{\cos A + (\sin A - 1)}}{{\cos A + (\sin A - 1)}}\]
By applying identities (i) ${a^2} - {b^2} = (a + b)(a - b)$ in numerator, (ii) ${(a + b)^2} = {a^2} + {b^2} + 2ab$ in denominator
We get,
=\[\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{[\cos A + (\sin A - 1)]}^2}}}\]
=$\dfrac{{{{\cos }^2}A - {{(\sin A - 1)}^2}}}{{{{\cos }^2}A + {{(\sin A - 1)}^2} + 2\cos A \times (\sin A - 1)}}$
Now we apply identity ${(a - b)^2} = {a^2} + {b^2} - 2ab$ on $\sin A - 1$ in both numerator and denominator
We get,
=$\dfrac{{{{\cos }^2}A - ({{\sin }^2}A + 1 - 2\sin A)}}{{{{\cos }^2}A + {{\sin }^2}A + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}$
As, \[{\cos ^2}A + {\sin ^2}A = 1\]
=\[\dfrac{{{{\cos }^2}A - {{\sin }^2}A - 1 + 2\sin A}}{{1 + 1 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - (1 - {{\cos }^2}A) - 1 + 2\sin A}}{{2 - 2\sin A + 2\cos A\sin A - 2\cos A}}\]
=\[\dfrac{{{{\cos }^2}A - 1 + {{\cos }^2}A - 1 + 2\sin A}}{{2(1 - \sin A) + 2\cos A(\sin A - 1)}}\]
=\[\dfrac{{2{{\cos }^2}A - 2 + 2\sin A}}{{2(1 - \sin A) - 2\cos A(1 - \sin A)}}\]
Taking (-2) common from numerator and \[2(1 - \sin A)\] common from denominator
We get
=\[\dfrac{{ - 2(1 - {{\cos }^2}A - \sin A)}}{{2(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{ - ({{\sin }^2}A - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
Taking $\sin A$ common in numerator we get,
=\[\dfrac{{ - \sin A(\sin A - 1)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A(1 - \sin A)}}{{(1 - \sin A)(1 - \cos A)}}\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}}\]
Now multiply and divide numerator and denominator by \[(1 + \cos A)\]
=\[\dfrac{{\sin A}}{{(1 - \cos A)}} \times \dfrac{{(1 + \cos A)}}{{(1 + \cos A)}}\]
We get
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{1 - {{\cos }^2}A}}\]
=\[\dfrac{{\sin A \times (1 + \cos A)}}{{{{\sin }^2}A}}\]
We get
=\[\dfrac{{1 + \cos A}}{{\sin A}}\]
i.e. \[\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
=$\cos ecA + \cot A$
=RHS
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE