Answer
Verified
468.9k+ views
Hint: We solve this question by grouping together the term \[(1 - \sin \theta )\] from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] we solve the LHS.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE