
Prove that \[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}} = \ cosec\theta + \cot \theta \]
Answer
593.1k+ views
Hint: We solve this question by grouping together the term \[(1 - \sin \theta )\] from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] we solve the LHS.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

