
Prove that \[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}} = \ cosec\theta + \cot \theta \]
Answer
493.8k+ views
Hint: We solve this question by grouping together the term \[(1 - \sin \theta )\] from both numerator and denominator and then rationalizing the term by multiplying both numerator and denominator by the same value. Using the trigonometric identities like \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] we solve the LHS.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Complete step-by-step answer:
Consider the Left hand side of the equation
\[\dfrac{{\cos \theta - \sin \theta + 1}}{{\cos \theta + \sin \theta - 1}}\]
Group together the term \[(1 - \sin \theta )\] from both numerator and denominator
\[ \Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}}\]
Rationalize the fraction by multiplying both numerator and denominator by \[\cos \theta + (1 - \sin \theta )\].
\[
\Rightarrow \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta - (1 - \sin \theta )}} \times \dfrac{{\cos \theta + (1 - \sin \theta )}}{{\cos \theta + (1 - \sin \theta )}} \\
\Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {\cos \theta - (1 - \sin \theta )} \right) \times \left( {\cos \theta - (1 - \sin \theta )} \right)}} \\
\]
Using the property \[(a + b)(a - b) = {a^2} - {b^2}\], where \[a = \cos \theta ,b = (1 - \sin \theta )\]
\[ \Rightarrow \dfrac{{{{\left( {\cos \theta + (1 - \sin \theta )} \right)}^2}}}{{\left( {{{\cos }^2}\theta - {{(1 - \sin \theta )}^2}} \right)}}\]
Now opening the squares using the property \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] in denominator and the property \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] in the numerator.
\[
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + {{(1 - \sin \theta )}^2} + 2\cos \theta (1 - \sin \theta )} \right)}}{{\left( {{{\cos }^2}\theta - (1 + {{\sin }^2}\theta - 2\sin \theta )} \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + (1 + {{\sin }^2}\theta - 2\sin \theta ) + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {{{\cos }^2}\theta + 1 + {{\sin }^2}\theta - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we pair up the terms that can be transformed using trigonometric identities.
\[ \Rightarrow \dfrac{{\left( {({{\cos }^2}\theta + {{\sin }^2}\theta ) + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {{{\cos }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}}\]
We know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1 \Rightarrow {\cos ^2}\theta = 1 - {\sin ^2}\theta \]
We substitute \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the numerator and \[{\cos ^2}\theta = 1 - {\sin ^2}\theta \] in the denominator.
\[
\Rightarrow \dfrac{{\left( {1 + 1 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( {1 - {{\sin }^2}\theta - 1 - {{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\Rightarrow \dfrac{{\left( {2 - 2\sin \theta + 2\cos \theta - 2\cos \theta \sin \theta } \right)}}{{\left( { - 2{{\sin }^2}\theta + 2\sin \theta } \right)}} \\
\]
Now we take 2 common from both denominator and numerator.
\[ \Rightarrow \dfrac{{2\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{2\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Cancel the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{\left( {1 - \sin \theta + \cos \theta - \cos \theta \sin \theta } \right)}}{{\left( {\sin \theta - {{\sin }^2}\theta } \right)}}\]
Now we take the terms common in the denominator and numerator.
\[
\Rightarrow \dfrac{{\left( {1 - \sin \theta ) + \cos \theta (1 - \sin \theta } \right)}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\Rightarrow \dfrac{{(1 - \sin \theta )(1 + \cos \theta )}}{{\sin \theta \left( {1 - \sin \theta } \right)}} \\
\]
Cancel out the same terms from both numerator and denominator.
\[ \Rightarrow \dfrac{{1 + \cos \theta }}{{\sin \theta }}\]
Now break the fraction into two parts
\[ \Rightarrow \dfrac{1}{{\sin \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }}\]
Since, we know that \[\ cosec\theta = \dfrac{1}{{\sin \theta }},\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], so substitute the values in the equation
\[ \Rightarrow \cos ec\theta + \cot \theta \]
which is equal to RHS of the equation.
Hence Proved
Note: Students many times make mistake of grouping wrong terms in the starting of the solution, always keep in mind that we have to create numerator of the type \[(a + b)\] and denominator of the type \[(a - b)\] or vice versa so when we rationalize the term in the numerator gets squared and the term in the denominator becomes easy so we can apply the formula \[(a + b)(a - b) = {a^2} - {b^2}\] to it.
Also, many students group together \[2\sin \theta \cos \theta = \sin 2\theta \] which should not be done because then we will not be able to cancel out common factor 2 from numerator and denominator, which will make our solution complex.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
