Prove that:
\[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]
Answer
Verified
443.7k+ views
Hint: To solve the given trigonometric question, we should know some of the trigonometric properties, these are given below, \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\]. We should also know the similar property for cosines, \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. We should also know that \[\cos (-x)=\cos x\]. Using these properties, we will prove the given statement.
Complete step by step answer:
First, we need to simplify the expression, \[\sin A+\sin 3A+\sin 5A+\sin 7A\] and \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Let’s take the first expression \[\sin A+\sin 3A+\sin 5A+\sin 7A\]. Rearranging the terms, it can be written as \[\sin A+\sin 7A+\sin 3A+\sin 5A\]. Using the trigonometric property \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression separately, we get
\[\Rightarrow 2\sin \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\sin \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos 3A+\cos A \right)\]
Now the second expression, we need to simplify is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Rearranging the terms, it can be written as \[\cos A+\cos 7A+\cos 3A+\cos 5A\]. Using the property \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression, we get
\[\Rightarrow 2\cos \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\cos \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos 3A+\cos A \right)\]
We are asked to prove the statement \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]. The LHS of the statement is \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}\], and the RHS of the statement is \[\tan 4A\].
Let’s simplify the LHS, the numerator of the LHS is \[\sin A+\sin 3A+\sin 5A+\sin 7A\], and the denominator of the LHS is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. We have already simplified these expressions above, using the simplified forms of these expressions, the LHS can be expressed as
\[\Rightarrow \dfrac{2\sin 4A\left( \cos 3A+\cos A \right)}{2\cos 4A\left( \cos 3A+\cos A \right)}\]
Canceling out the common factors from the numerator and denominator, we get
\[\begin{align}
& \Rightarrow \dfrac{\sin 4A}{\cos 4A} \\
& \Rightarrow \tan 4A=RHS \\
\end{align}\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve these types of questions, one should remember the trigonometric properties. The properties, we used to solve this problem are \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] and \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. If the LHS has an expression in fraction form then simplifying the numerator and denominator separately is easier to solve.
Complete step by step answer:
First, we need to simplify the expression, \[\sin A+\sin 3A+\sin 5A+\sin 7A\] and \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Let’s take the first expression \[\sin A+\sin 3A+\sin 5A+\sin 7A\]. Rearranging the terms, it can be written as \[\sin A+\sin 7A+\sin 3A+\sin 5A\]. Using the trigonometric property \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression separately, we get
\[\Rightarrow 2\sin \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\sin \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos 3A+\cos A \right)\]
Now the second expression, we need to simplify is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Rearranging the terms, it can be written as \[\cos A+\cos 7A+\cos 3A+\cos 5A\]. Using the property \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression, we get
\[\Rightarrow 2\cos \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\cos \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos 3A+\cos A \right)\]
We are asked to prove the statement \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]. The LHS of the statement is \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}\], and the RHS of the statement is \[\tan 4A\].
Let’s simplify the LHS, the numerator of the LHS is \[\sin A+\sin 3A+\sin 5A+\sin 7A\], and the denominator of the LHS is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. We have already simplified these expressions above, using the simplified forms of these expressions, the LHS can be expressed as
\[\Rightarrow \dfrac{2\sin 4A\left( \cos 3A+\cos A \right)}{2\cos 4A\left( \cos 3A+\cos A \right)}\]
Canceling out the common factors from the numerator and denominator, we get
\[\begin{align}
& \Rightarrow \dfrac{\sin 4A}{\cos 4A} \\
& \Rightarrow \tan 4A=RHS \\
\end{align}\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve these types of questions, one should remember the trigonometric properties. The properties, we used to solve this problem are \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] and \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. If the LHS has an expression in fraction form then simplifying the numerator and denominator separately is easier to solve.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE