Answer
Verified
431.4k+ views
Hint: To solve the given trigonometric question, we should know some of the trigonometric properties, these are given below, \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\]. We should also know the similar property for cosines, \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. We should also know that \[\cos (-x)=\cos x\]. Using these properties, we will prove the given statement.
Complete step by step answer:
First, we need to simplify the expression, \[\sin A+\sin 3A+\sin 5A+\sin 7A\] and \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Let’s take the first expression \[\sin A+\sin 3A+\sin 5A+\sin 7A\]. Rearranging the terms, it can be written as \[\sin A+\sin 7A+\sin 3A+\sin 5A\]. Using the trigonometric property \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression separately, we get
\[\Rightarrow 2\sin \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\sin \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos 3A+\cos A \right)\]
Now the second expression, we need to simplify is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Rearranging the terms, it can be written as \[\cos A+\cos 7A+\cos 3A+\cos 5A\]. Using the property \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression, we get
\[\Rightarrow 2\cos \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\cos \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos 3A+\cos A \right)\]
We are asked to prove the statement \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]. The LHS of the statement is \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}\], and the RHS of the statement is \[\tan 4A\].
Let’s simplify the LHS, the numerator of the LHS is \[\sin A+\sin 3A+\sin 5A+\sin 7A\], and the denominator of the LHS is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. We have already simplified these expressions above, using the simplified forms of these expressions, the LHS can be expressed as
\[\Rightarrow \dfrac{2\sin 4A\left( \cos 3A+\cos A \right)}{2\cos 4A\left( \cos 3A+\cos A \right)}\]
Canceling out the common factors from the numerator and denominator, we get
\[\begin{align}
& \Rightarrow \dfrac{\sin 4A}{\cos 4A} \\
& \Rightarrow \tan 4A=RHS \\
\end{align}\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve these types of questions, one should remember the trigonometric properties. The properties, we used to solve this problem are \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] and \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. If the LHS has an expression in fraction form then simplifying the numerator and denominator separately is easier to solve.
Complete step by step answer:
First, we need to simplify the expression, \[\sin A+\sin 3A+\sin 5A+\sin 7A\] and \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Let’s take the first expression \[\sin A+\sin 3A+\sin 5A+\sin 7A\]. Rearranging the terms, it can be written as \[\sin A+\sin 7A+\sin 3A+\sin 5A\]. Using the trigonometric property \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression separately, we get
\[\Rightarrow 2\sin \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\sin \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\sin 4A\left( \cos 3A+\cos A \right)\]
Now the second expression, we need to simplify is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. Rearranging the terms, it can be written as \[\cos A+\cos 7A+\cos 3A+\cos 5A\]. Using the property \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\] on the first two and next two terms of the above expression, we get
\[\Rightarrow 2\cos \left( \dfrac{A+7A}{2} \right)\cos \left( \dfrac{A-7A}{2} \right)+2\cos \left( \dfrac{3A+5A}{2} \right)\cos \left( \dfrac{3A-5A}{2} \right)\]
Simplifying the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos (-3A)+\cos (-A) \right)\]
Using the property \[\cos (-x)=\cos x\] on the above expression, we get
\[\Rightarrow 2\cos 4A\left( \cos 3A+\cos A \right)\]
We are asked to prove the statement \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}=\tan 4A\]. The LHS of the statement is \[\dfrac{\sin A+\sin 3A+\sin 5A+\sin 7A}{\cos A+\cos 3A+\cos 5A+\cos 7A}\], and the RHS of the statement is \[\tan 4A\].
Let’s simplify the LHS, the numerator of the LHS is \[\sin A+\sin 3A+\sin 5A+\sin 7A\], and the denominator of the LHS is \[\cos A+\cos 3A+\cos 5A+\cos 7A\]. We have already simplified these expressions above, using the simplified forms of these expressions, the LHS can be expressed as
\[\Rightarrow \dfrac{2\sin 4A\left( \cos 3A+\cos A \right)}{2\cos 4A\left( \cos 3A+\cos A \right)}\]
Canceling out the common factors from the numerator and denominator, we get
\[\begin{align}
& \Rightarrow \dfrac{\sin 4A}{\cos 4A} \\
& \Rightarrow \tan 4A=RHS \\
\end{align}\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve these types of questions, one should remember the trigonometric properties. The properties, we used to solve this problem are \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)\] and \[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]. If the LHS has an expression in fraction form then simplifying the numerator and denominator separately is easier to solve.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE