
Prove that:
$\frac{{\sin \theta }}{{1 - \cos \theta }} = cosec\theta + \cot \theta $
Answer
622.8k+ views
Hint: - Taking conjugate of denominator.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Given,
L.H.S $\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \\
\\
\end{gathered} $
Multiply and Divide by $\left( {1 + \cos \theta } \right)$ , we get
$\begin{gathered}
= \frac{{\sin \theta }}{{1 - \cos \theta }} \times \frac{{1 + \cos \theta }}{{1 + \cos \theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\left( {1 - \cos \theta } \right)\left( {1 + \cos \theta } \right)}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\left( 1 \right)}^2} - {{\left( {\cos \theta } \right)}^2}}} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{1 - {{\cos }^2}\theta }} \\
\end{gathered} $
We know that, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Or, ${\sin ^2}\theta = 1 - {\cos ^2}\theta $
Replace $\left( {1 - {{\cos }^2}\theta } \right)$ by ${\sin ^2}\theta $ , we get
L.H.S $\begin{gathered}
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{{{\sin }^2}\theta }} \\
= \frac{{\sin \theta \left( {1 + \cos \theta } \right)}}{{\sin \theta \times \sin \theta }} \\
\end{gathered} $
Cancel out $\sin \theta $ in numerator by $\sin \theta $ in denominator, we get
$\begin{gathered}
= \frac{{1 + \cos \theta }}{{\sin \theta }} \\
= \frac{1}{{\sin \theta }} + \frac{{\cos \theta }}{{\sin \theta }} \\
\end{gathered} $
Now we can written $\frac{1}{{\sin \theta }} = \cos ec\theta $ and $\frac{{\cos \theta }}{{\sin \theta }} = \cot \theta $ , we get
L.H.S $ = \cos ec\theta + \cot \theta $- (1)
Since, given R.H.S$ = \cos ec\theta + \cot \theta $ - (2)
By seeing equation (1) and (2) we can tell that
L.H.S R.H.S
Hence, it proved.
Note: - These types of questions are also solve by taking R.H.S (Right Hand Side), solve it to prove L.H.S (Left Hand Side). During solving trigonometry proving we should always have basic trigonometry identities in our mind.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

