
Prove that if the function is differentiable at a point c, then it is continuous at that point.
Answer
565.2k+ views
Hint: Here in this question firstly we should know the basic definition of differentiable and continuous functions which is mentioned below: -
Differentiable functions: - A function is said to be differentiable if it has derivatives there. The derivative of a function at a point x=c (c is a point in its domain) is given by: -
$f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ Exists
Continuous functions: - A function is said to be continuous at point $x = c$ , if function exists at that point and is given by: -
$\mathop {\lim }\limits_{x \to c} f(x)$ Exists
$\mathop {\lim }\limits_{x \to c} f(x) = f(c)$
Complete step-by-step solution:
Let f(x) is function which is differentiable at point x=c, so according to differentiability definition $f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ Exists.
Also when a function is continuous at point x=c then $\mathop {\lim }\limits_{x \to a} f(x) = f(c)$ exists.
We can also write equation of continuity as \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] (rearranging the terms)
So to prove a function to be continuous we have to make \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] equation satisfied.
Now we will multiply and divide \[\mathop {\lim }\limits_{x \to c} (x - c)\]in \[\mathop {\lim }\limits_{x \to c} f(x) - f(c)\] so that we can prove a function continuous. Basically we are trying to obtain \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] because it is the relation for continuous function, if this exists then only function is said to be continuous.
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = \mathop {\lim }\limits_{x \to c} (f(x) - f(c))(\dfrac{{x - c}}{{x - c}})\]
(Taking \[\mathop {\lim }\limits_{x \to c} (x - c)\] in the denominator as well as in the multiplication) \[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = \dfrac{{\mathop {\lim }\limits_{x \to c} (f(x) - f(c))}}{{\mathop {\lim }\limits_{x \to c} x - c}}\mathop {\lim }\limits_{x \to c} (x - c)\] ..........................equation(1)
(We know that $f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ as function is differentiable given in question so we have used this relation in equation1)
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = f('c)\mathop {\lim }\limits_{x \to c} (x - c)\]
(Now we will put the limit in \[\mathop {\lim }\limits_{x \to c} (x - c)\] which will result that term to zero)
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = f('c)(0)\]
\[\therefore \mathop {\lim }\limits_{x \to c} f(x) - f(c) = (0)\]
Hence \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = (0)\] and by rearranging we also write this as \[\mathop {\lim }\limits_{x \to c} f(x) = f(c)\] making function f(x) continuous at x=c.
Therefore we have used the function differentiability to prove its continuity. And hence if the function is differentiable at a point c, then it is continuous at that point.
Note: It should be noted that the converse is definitely not true for example, f(x) = |x| is continuous at x = 0, but not differentiable there. Solving limits can sometimes become confusing so make sure you are doing it cautiously. Also definition of differentiability and continuous function must be well known to a student.
Differentiable functions: - A function is said to be differentiable if it has derivatives there. The derivative of a function at a point x=c (c is a point in its domain) is given by: -
$f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ Exists
Continuous functions: - A function is said to be continuous at point $x = c$ , if function exists at that point and is given by: -
$\mathop {\lim }\limits_{x \to c} f(x)$ Exists
$\mathop {\lim }\limits_{x \to c} f(x) = f(c)$
Complete step-by-step solution:
Let f(x) is function which is differentiable at point x=c, so according to differentiability definition $f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ Exists.
Also when a function is continuous at point x=c then $\mathop {\lim }\limits_{x \to a} f(x) = f(c)$ exists.
We can also write equation of continuity as \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] (rearranging the terms)
So to prove a function to be continuous we have to make \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] equation satisfied.
Now we will multiply and divide \[\mathop {\lim }\limits_{x \to c} (x - c)\]in \[\mathop {\lim }\limits_{x \to c} f(x) - f(c)\] so that we can prove a function continuous. Basically we are trying to obtain \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = 0\] because it is the relation for continuous function, if this exists then only function is said to be continuous.
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = \mathop {\lim }\limits_{x \to c} (f(x) - f(c))(\dfrac{{x - c}}{{x - c}})\]
(Taking \[\mathop {\lim }\limits_{x \to c} (x - c)\] in the denominator as well as in the multiplication) \[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = \dfrac{{\mathop {\lim }\limits_{x \to c} (f(x) - f(c))}}{{\mathop {\lim }\limits_{x \to c} x - c}}\mathop {\lim }\limits_{x \to c} (x - c)\] ..........................equation(1)
(We know that $f'(c) = \mathop {\lim }\limits_{x \to c} \dfrac{{f(x) - f(c)}}{{x - c}}$ as function is differentiable given in question so we have used this relation in equation1)
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = f('c)\mathop {\lim }\limits_{x \to c} (x - c)\]
(Now we will put the limit in \[\mathop {\lim }\limits_{x \to c} (x - c)\] which will result that term to zero)
\[ \Rightarrow \mathop {\lim }\limits_{x \to c} f(x) - f(c) = f('c)(0)\]
\[\therefore \mathop {\lim }\limits_{x \to c} f(x) - f(c) = (0)\]
Hence \[\mathop {\lim }\limits_{x \to c} f(x) - f(c) = (0)\] and by rearranging we also write this as \[\mathop {\lim }\limits_{x \to c} f(x) = f(c)\] making function f(x) continuous at x=c.
Therefore we have used the function differentiability to prove its continuity. And hence if the function is differentiable at a point c, then it is continuous at that point.
Note: It should be noted that the converse is definitely not true for example, f(x) = |x| is continuous at x = 0, but not differentiable there. Solving limits can sometimes become confusing so make sure you are doing it cautiously. Also definition of differentiability and continuous function must be well known to a student.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

