Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Prove that $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$

seo-qna
SearchIcon
Answer
VerifiedVerified
429.9k+ views
Hint: In order to solve this question easily we will transform the given terms in sin and cos. In this question we have to prove that the left-hand side is equal to the right-hand side by using some basic formula and identity as discussed below.

Complete step-by-step solution:
Now, by using trigonometric identities we will easily solve the given problem.
We know that
$\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$
Now, first we consider left hand side of the given expression
LHS = $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
= $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right)$
converting above expression n terms of sinA or cosA
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA}}}}{{{\text{sinA}}}}{\text{ - }}\dfrac{{\text{1}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA}}}}{{{\text{cosA}}}} + \dfrac{{\text{1}}}{{{\text{cosA}}}}} \right)$
= $\left( {{\text{1 + }}\dfrac{{{\text{cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {{\text{1 + }}\dfrac{{{\text{sinA + 1}}}}{{{\text{cosA}}}}} \right)$
Simplify above expressions as below-
= $\left( {\dfrac{{{\text{sinA + cosA - 1}}}}{{{\text{sinA}}}}} \right)\left( {\dfrac{{{\text{cosA + sinA + 1}}}}{{{\text{cosA}}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}\left( {{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}} \right)$
= $\dfrac{{{{\left( {{\text{sinA + cosA}}} \right)}^{\text{2}}}{\text{ - 1}}}}{{{\text{sinAcosA}}}}$ As we know, ${\left( {{\text{a + b}}} \right)^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}{\text{ + 2ab}}$
= $\dfrac{{{\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
As we know, ${\text{si}}{{\text{n}}^{\text{2}}}{\text{A + co}}{{\text{s}}^{\text{2}}}{\text{A = 1}}$
= $\dfrac{{{\text{1 + 2sinAcosA - 1}}}}{{{\text{sinAcosA}}}}$
= $\dfrac{{{\text{2sinAcosA}}}}{{{\text{sinAcosA}}}}$
= 2
Therefore, LHS=RHS.
Hence, proved $\left( {{\text{1 + cotA - cosecA}}} \right)\left( {{\text{1 + tanA + secA}}} \right) = 2$

Note: We need to remember some basic formulas related to trigonometry. So that we easily understand the problem and apply these formulas. Some of them are mentioned below which we used in this question.
These Identities are given as-
\[{\text{sin}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cosec}}\theta }}$
\[{\text{cos}}\theta \] = $\dfrac{{\text{1}}}{{{\text{sec}}\theta }}$
\[{\text{tan}}\theta \] = $\dfrac{{\text{1}}}{{{\text{cot}}\theta }}$
\[{\text{cot}}\theta \]= $\dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}$