
Prove that:
$ {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^{a + b - c}} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^{b + c - a}} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^{c + a - b}} = 1 $
Answer
564.6k+ views
Hint: Here, we can see that the base of each term is the same. Therefore, to solve this problem, we will use three important rules of exponents. The first rule states that when we need to multiply the numbers having the same base, we should add the exponents. The second rule states that when we need to divide the numbers having the same base, we should subtract the exponents. The third rule states that powers are multiplied when the numbers are raised by another number.
Formulas used:
When we need to multiply the numbers having the same base, we should add the exponents. $ {p^m} \times {p^n} = {p^{\left( {m + n} \right)}} $
When we need to divide the numbers having the same base, we should subtract the exponents.
$ \dfrac{{{p^m}}}{{{p^n}}} = {p^{\left( {m - n} \right)}} $
Powers are multiplied when the numbers are raised by another number.
$ {\left( {{p^m}} \right)^n} = {p^{\left( {m \times n} \right)}} $
Complete step-by-step answer:
We have
$ L.H.S. = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^{a + b - c}} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^{b + c - a}} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^{c + a - b}} $
We can rewrite this as
\[ \Rightarrow L.H.S. = \dfrac{{{{\left( {{x^a}} \right)}^{a + b - c}}}}{{{{\left( {{x^b}} \right)}^{a + b - c}}}} \times \dfrac{{{{\left( {{x^b}} \right)}^{b + c - a}}}}{{{{\left( {{x^c}} \right)}^{b + c - a}}}} \times \dfrac{{{{\left( {{x^c}} \right)}^{c + a - b}}}}{{{{\left( {{x^a}} \right)}^{c + a - b}}}}\]
Here, we will apply the third rule which states that powers are multiplied when the numbers are raised by another number: $ {\left( {{p^m}} \right)^n} = {p^{\left( {m \times n} \right)}} $
\[ \Rightarrow L.H.S. = \dfrac{{{x^{{a^2} + ab - ac}}}}{{{x^{ab + {b^2} - bc}}}} \times \dfrac{{{x^{{b^2} + bc - ab}}}}{{{x^{bc + {c^2} - ac}}}} \times \dfrac{{{x^{{c^2} + ac - bc}}}}{{{x^{ac + {a^2} - ab}}}}\]
Now we will apply the second rule which states that when we need to divide the numbers having the same base, we should subtract the exponents: $ \dfrac{{{p^m}}}{{{p^n}}} = {p^{\left( {m - n} \right)}} $
\[
\Rightarrow L.H.S. = {x^{{a^2} + ab - ac - ab - {b^2} + bc}} \times {x^{{b^2} + bc - ab - bc - {c^2} + ac}} \times {x^{{c^2} + ac - bc - ac - {a^2} + ab}} \\
\Rightarrow L.H.S. = {x^{{a^2} - ac - {b^2} + bc}} \times {x^{{b^2} - ab - {c^2} + ac}} \times {x^{{c^2} - bc - {a^2} + ab}} \;
\]
We will now apply the first rule which states that when we need to multiply the numbers having the same base, we should add the exponents: $ {p^m} \times {p^n} = {p^{\left( {m + n} \right)}} $
\[
\Rightarrow L.H.S. = {x^{{a^2} - ac - {b^2} + bc + {b^2} - ab - {c^2} + ac + {c^2} - bc - {a^2} + ab}} \\
\Rightarrow L.H.S. = {x^0} \\
\Rightarrow L.H.S. = 1 \\
\Rightarrow L.H.S. = R.H.S \;
\]
Hence, it is proved that $ {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^{a + b - c}} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^{b + c - a}} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^{c + a - b}} = 1 $
Note: In this problem, we have proved the given equation by using three rules of exponents in the following order:
First, we have multiplied the powers of base $ x $ .
Second, we have subtracted the powers of base $ x $
And finally, we have added the powers of base $ x $ and proved the given equation.
Formulas used:
When we need to multiply the numbers having the same base, we should add the exponents. $ {p^m} \times {p^n} = {p^{\left( {m + n} \right)}} $
When we need to divide the numbers having the same base, we should subtract the exponents.
$ \dfrac{{{p^m}}}{{{p^n}}} = {p^{\left( {m - n} \right)}} $
Powers are multiplied when the numbers are raised by another number.
$ {\left( {{p^m}} \right)^n} = {p^{\left( {m \times n} \right)}} $
Complete step-by-step answer:
We have
$ L.H.S. = {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^{a + b - c}} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^{b + c - a}} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^{c + a - b}} $
We can rewrite this as
\[ \Rightarrow L.H.S. = \dfrac{{{{\left( {{x^a}} \right)}^{a + b - c}}}}{{{{\left( {{x^b}} \right)}^{a + b - c}}}} \times \dfrac{{{{\left( {{x^b}} \right)}^{b + c - a}}}}{{{{\left( {{x^c}} \right)}^{b + c - a}}}} \times \dfrac{{{{\left( {{x^c}} \right)}^{c + a - b}}}}{{{{\left( {{x^a}} \right)}^{c + a - b}}}}\]
Here, we will apply the third rule which states that powers are multiplied when the numbers are raised by another number: $ {\left( {{p^m}} \right)^n} = {p^{\left( {m \times n} \right)}} $
\[ \Rightarrow L.H.S. = \dfrac{{{x^{{a^2} + ab - ac}}}}{{{x^{ab + {b^2} - bc}}}} \times \dfrac{{{x^{{b^2} + bc - ab}}}}{{{x^{bc + {c^2} - ac}}}} \times \dfrac{{{x^{{c^2} + ac - bc}}}}{{{x^{ac + {a^2} - ab}}}}\]
Now we will apply the second rule which states that when we need to divide the numbers having the same base, we should subtract the exponents: $ \dfrac{{{p^m}}}{{{p^n}}} = {p^{\left( {m - n} \right)}} $
\[
\Rightarrow L.H.S. = {x^{{a^2} + ab - ac - ab - {b^2} + bc}} \times {x^{{b^2} + bc - ab - bc - {c^2} + ac}} \times {x^{{c^2} + ac - bc - ac - {a^2} + ab}} \\
\Rightarrow L.H.S. = {x^{{a^2} - ac - {b^2} + bc}} \times {x^{{b^2} - ab - {c^2} + ac}} \times {x^{{c^2} - bc - {a^2} + ab}} \;
\]
We will now apply the first rule which states that when we need to multiply the numbers having the same base, we should add the exponents: $ {p^m} \times {p^n} = {p^{\left( {m + n} \right)}} $
\[
\Rightarrow L.H.S. = {x^{{a^2} - ac - {b^2} + bc + {b^2} - ab - {c^2} + ac + {c^2} - bc - {a^2} + ab}} \\
\Rightarrow L.H.S. = {x^0} \\
\Rightarrow L.H.S. = 1 \\
\Rightarrow L.H.S. = R.H.S \;
\]
Hence, it is proved that $ {\left( {\dfrac{{{x^a}}}{{{x^b}}}} \right)^{a + b - c}} \times {\left( {\dfrac{{{x^b}}}{{{x^c}}}} \right)^{b + c - a}} \times {\left( {\dfrac{{{x^c}}}{{{x^a}}}} \right)^{c + a - b}} = 1 $
Note: In this problem, we have proved the given equation by using three rules of exponents in the following order:
First, we have multiplied the powers of base $ x $ .
Second, we have subtracted the powers of base $ x $
And finally, we have added the powers of base $ x $ and proved the given equation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

