
Prove that: ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Answer
619.5k+ views
Hint: First use the formula ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$ on the LHS to get ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$. Then use the formula $\cos \left( -\theta \right)=\cos \left( \theta \right)$ to get${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$. Then find the value of $\cos \left( 120{}^\circ \right)$. Substitute this value and the value of \[\cos \left( 36{}^\circ \right)\] in the obtained expression. The resultant will be equal to the RHS.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

