Answer
Verified
498.6k+ views
Hint: First use the formula ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$ on the LHS to get ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$. Then use the formula $\cos \left( -\theta \right)=\cos \left( \theta \right)$ to get${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$. Then find the value of $\cos \left( 120{}^\circ \right)$. Substitute this value and the value of \[\cos \left( 36{}^\circ \right)\] in the obtained expression. The resultant will be equal to the RHS.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Complete step-by-step answer:
In this question, we need to prove that ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$.
For this, we will simplify the LHS.
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
We know that if we have two angles A and B, then:
${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$
Using this formula on the LHS, we get the following:
LHS $={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ $
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
Now, we also know that $\cos \left( -\theta \right)=\cos \left( \theta \right)$ as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)$
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$ …(1)
Now, here we need to calculate $\cos \left( 120{}^\circ \right)$
$\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)$
Now, we know the property that $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$
Using this property in the above equation, we will get the following:
\[\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)\]
\[\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)\]
Now, we will substitute this in the equation (1) to get the following:
${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)$
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
Now, we already know that \[sin\left( 30{}^\circ \right)=\dfrac{1}{2}\] and that \[\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}\].
We will now substitute these values in the above equation to get the following:
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}\]
\[{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS \[=\dfrac{\sqrt{5}+1}{8}\]
Now, we will look at the RHS.
RHS \[=\dfrac{\sqrt{5}+1}{8}\]
Hence, the LHS is equal to the RHS.
So, ${{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}$
Hence proved.
Note: In this question, it is important to know about the trigonometric properties like ${{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)$, $\cos \left( -\theta \right)=\cos \left( \theta \right)$, and $\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)$. Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE