Answer
Verified
499.2k+ views
Hint: Write expression of ${{\left( 1-x \right)}^{n}}\And {{\left( 1-x \right)}^{m}}$ and then apply integral to both sides.
Here, we have to prove
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$
Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.
Let us simplifying LHS part:
\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]
Writing the above summation to series as
\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]
Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;
${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$
As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as
\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]
Let us multiply by ${{x}^{m}}$ to both sides of the above series
${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$
We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]
Let us integrate the above series from $0\text{ to 1}$ we get;
$\begin{align}
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
\end{align}$
Applying the limits, we get;
$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$
Hence, LHS part can be written as;
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$
Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:
\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]
${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;
${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$
Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get
${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$
Integrating the above series to both sides from the limit $0\text{ to }1$
$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$
We have
$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$
Using the above formula in the equation $\left( 4 \right)$
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.$
Applying the limits, we get
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$
Rewriting the above equation in summation form we will get RHS part as
$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$
We have a property of definite integral as;
$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
We can use the above property with equation $\left( 5 \right)$ as
$\begin{align}
& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\
& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\
\end{align}$
Therefore,
$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$
Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$
Hence proved.
Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.
One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.
Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.
Here, we have to prove
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$
Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.
Let us simplifying LHS part:
\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]
Writing the above summation to series as
\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]
Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;
${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$
As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as
\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]
Let us multiply by ${{x}^{m}}$ to both sides of the above series
${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$
We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]
Let us integrate the above series from $0\text{ to 1}$ we get;
$\begin{align}
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
\end{align}$
Applying the limits, we get;
$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$
Hence, LHS part can be written as;
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$
Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:
\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]
${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;
${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$
Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get
${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$
Integrating the above series to both sides from the limit $0\text{ to }1$
$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$
We have
$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$
Using the above formula in the equation $\left( 4 \right)$
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.$
Applying the limits, we get
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$
Rewriting the above equation in summation form we will get RHS part as
$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$
We have a property of definite integral as;
$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
We can use the above property with equation $\left( 5 \right)$ as
$\begin{align}
& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\
& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\
\end{align}$
Therefore,
$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$
Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$
Hence proved.
Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.
One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.
Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE