Answer
Verified
489.9k+ views
Hint: Write expression of ${{\left( 1-x \right)}^{n}}\And {{\left( 1-x \right)}^{m}}$ and then apply integral to both sides.
Here, we have to prove
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$
Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.
Let us simplifying LHS part:
\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]
Writing the above summation to series as
\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]
Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;
${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$
As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as
\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]
Let us multiply by ${{x}^{m}}$ to both sides of the above series
${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$
We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]
Let us integrate the above series from $0\text{ to 1}$ we get;
$\begin{align}
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
\end{align}$
Applying the limits, we get;
$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$
Hence, LHS part can be written as;
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$
Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:
\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]
${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;
${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$
Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get
${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$
Integrating the above series to both sides from the limit $0\text{ to }1$
$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$
We have
$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$
Using the above formula in the equation $\left( 4 \right)$
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.$
Applying the limits, we get
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$
Rewriting the above equation in summation form we will get RHS part as
$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$
We have a property of definite integral as;
$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
We can use the above property with equation $\left( 5 \right)$ as
$\begin{align}
& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\
& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\
\end{align}$
Therefore,
$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$
Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$
Hence proved.
Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.
One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.
Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.
Here, we have to prove
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{C}_{k}}}\dfrac{1}{k+m+1}=\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{C}_{k}}\dfrac{1}{k+n+1}}.........\left( 1 \right)$
Now, we cannot concert LHS to RHS directly, so basically we need to simplify LHS and RHS both for proving.
Let us simplifying LHS part:
\[LHS=\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}}\]
Writing the above summation to series as
\[\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{\left( k+m+1 \right)}=\dfrac{{}^{n}{{c}_{0}}}{\left( m+1 \right)}-\dfrac{{}^{n}{{c}_{1}}}{\left( m+2 \right)}+\dfrac{{}^{n}{{c}_{2}}}{\left( m+3 \right)}}+.......{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}........\left( 2 \right)\]
Now we can observe that ${}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.......{}^{n}{{c}_{n-1}},{}^{n}{{c}_{n}}$ are coefficient of ${{x}^{0}},{{x}^{1}},{{x}^{2}}.......{{x}^{n-1}},{{x}^{n}}\text{ in }{{\left( 1+x \right)}^{n}}$ as expansion of it can be written as;
${{\left( 1+x \right)}^{n}}={}^{n}{{c}_{0}}+{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}+.....{}^{n}{{c}_{n}}{{x}^{n}}$
As, series of equation $\left( 2 \right)$ has alternative positive and negative signs, means we need to relate the series by expansion of ${{\left( 1-x \right)}^{n}}$ which can be written as
\[{{\left( 1-x \right)}^{n}}={}^{n}{{c}_{0}}-{}^{n}{{c}_{1}}x+{}^{n}{{c}_{2}}{{x}^{2}}-{}^{n}{{c}_{3}}{{x}^{3}}+.........+{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n}}\]
Let us multiply by ${{x}^{m}}$ to both sides of the above series
${{\left( 1-x \right)}^{n}}{{x}^{m}}={}^{n}{{c}_{0}}{{x}^{m}}-{}^{n}{{c}_{1}}{{x}^{m+1}}+{}^{n}{{c}_{2}}{{x}^{m+2}}+......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}{{x}^{n+m}}$
We have \[\int{{{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}}\]
Let us integrate the above series from $0\text{ to 1}$ we get;
$\begin{align}
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\int_{0}^{1}{{}^{n}{{c}_{0}}{{x}^{m}}dx}-\int_{0}^{1}{{}^{n}{{c}_{1}}{{x}^{m+1}}dx}+\int_{0}^{1}{{}^{n}{{c}_{2}}{{x}^{m+2}}dx}+.......{{\left( -1 \right)}^{n}}\int_{0}^{1}{{}^{n}{{c}_{n}}{{x}^{m+n}}dx} \\
& \int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}={}^{n}{{c}_{0}}\dfrac{{{x}^{m+1}}}{m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.-{}^{n}{{c}_{1}}\dfrac{{{x}^{m+2}}}{m+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+{}^{n}{{c}_{2}}\dfrac{{{x}^{m+3}}}{m+3}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+.......{{\left( -1 \right)}^{n}}{}^{n}{{c}_{n}}\dfrac{{{x}^{m+n+1}}}{m+n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right. \\
\end{align}$
Applying the limits, we get;
$\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx}=\dfrac{{}^{n}{{c}_{0}}}{m+1}-\dfrac{{}^{n}{{c}_{1}}}{m+2}+\dfrac{{}^{n}{{c}_{2}}}{m+3}+........{{\left( -1 \right)}^{n}}\dfrac{{}^{n}{{c}_{n}}}{m+n+1}$
Hence, LHS part can be written as;
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{n}}{{x}^{m}}dx........\left( 3 \right)}}$
Now, let us simplify the RHS part in a similar way. Here we have to take expansion of ${{\left( 1-x \right)}^{m}}$ as given summation can be expressed as:
\[\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{\left( k+n+1 \right)}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}.........{{\left( -1 \right)}^{m-1}}\dfrac{{}^{m}{{C}_{m-1}}}{n+m}+{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}}\]
${}^{m}{{c}_{0}},-{}^{m}{{c}_{1}},{}^{m}{{c}_{2}},-{}^{m}{{c}_{3}}...........$ are the coefficients of ${{\left( 1-x \right)}^{m}}$ . Expansion of ${{\left( 1-x \right)}^{m}}$can be written as;
${{\left( 1-x \right)}^{m}}={}^{m}{{c}_{0}}-{}^{m}{{c}_{1}}x+{}^{m}{{c}_{2}}{{x}^{2}}-{}^{m}{{c}_{3}}{{x}^{3}}+........{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m}}$
Multiplying by ${{x}^{n}}$ to both sides of the above expansion, we get
${{\left( 1-x \right)}^{m}}{{x}^{n}}={}^{m}{{c}_{0}}{{x}^{n}}-{}^{m}{{c}_{1}}{{x}^{n+1}}+{}^{m}{{c}_{2}}{{x}^{n+2}}+.....{{\left( -1 \right)}^{m-1}}{}^{m}{{c}_{m-1}}{{x}^{m+n-1}}+{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}$
Integrating the above series to both sides from the limit $0\text{ to }1$
$\int\limits_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{}^{m}{{c}_{0}}{{x}^{n}}dx-}\int_{0}^{1}{{}^{m}{{c}_{1}}{{x}^{n+1}}dx+\int_{0}^{1}{{}^{m}{{c}_{2}}{{x}^{n+2}}dx+.........\int_{0}^{1}{{{\left( -1 \right)}^{m}}{}^{m}{{c}_{m}}{{x}^{m+n}}dx............\left( 4 \right)}}}$
We have
$\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$
Using the above formula in the equation $\left( 4 \right)$
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}-\dfrac{{}^{m}{{c}_{0}}{{x}^{n+1}}}{n+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix}- \right.\dfrac{{}^{m}{{c}_{1}}{{x}^{n+2}}}{n+2}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}{{x}^{n+m+1}}}{n+m+1}\left| \begin{matrix}
1 \\
0 \\
\end{matrix} \right.$
Applying the limits, we get
$\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\dfrac{{}^{m}{{c}_{0}}}{n+1}-\dfrac{{}^{m}{{c}_{1}}}{n+2}+\dfrac{{}^{m}{{c}_{2}}}{n+3}+........{{\left( -1 \right)}^{m}}\dfrac{{}^{m}{{c}_{m}}}{n+m+1}$
Rewriting the above equation in summation form we will get RHS part as
$\sum\limits_{k=0}^{k=m}{{{\left( -1 \right)}^{k}}\dfrac{{}^{m}{{c}_{k}}}{n+k+1}}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}......\left( 5 \right)$
We have a property of definite integral as;
$\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}$
We can use the above property with equation $\left( 5 \right)$ as
$\begin{align}
& \sum\limits_{k=0}^{k-m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+k+1}=\int_{0}^{1}{{{\left( 1-x \right)}^{m}}{{x}^{n}}dx}=\int_{0}^{1}{{{\left( 1-\left( 0+1-x \right) \right)}^{m}}{{\left( 0+1-x \right)}^{n}}dx}} \\
& =\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx} \\
\end{align}$
Therefore,
$\sum\limits_{k=0}^{k=m}{\dfrac{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}}{n+m+1}=\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx............\left( 6 \right)}}$
Now, comparing the equation $\left( 3 \right)\And \left( 6 \right)$ ,the RHS part of both the equations are equal, hence, the LHS part of the equation should also be equal.
$\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}{}^{n}{{c}_{k}}\dfrac{1}{k+m+1}=}\sum\limits_{k=0}^{m}{{{\left( -1 \right)}^{k}}{}^{m}{{c}_{k}}\dfrac{1}{k+n+1}}$
Hence proved.
Note: No need to solve $\int_{0}^{1}{{{x}^{m}}{{\left( 1-x \right)}^{n}}dx\text{ or }}\int_{0}^{1}{{{x}^{n}}{{\left( 1-x \right)}^{m}}}$ further. As we can use the property of definite integral. One can waste his/her time with the integral part.
One can think why integration is used, the reason is simple terms $m+1,m+2.....m+n+1\text{ or }n+1,n+2,....m+n+1$ are in denominator and $\int{{{x}^{m}}=\dfrac{{{x}^{m+1}}}{m+1}}$ , hence we need use integration only by observation of the given series. If the terms $m+1,m+2.....m+n+1\text{ or }n,n+1,n+2.....n+m+1$ were in multiplication with the terms ${}^{m}{{c}_{0}},{}^{m}{{c}_{1}},{}^{m}{{c}_{2}}......\text{ or }{}^{n}{{c}_{0}},{}^{n}{{c}_{1}},{}^{n}{{c}_{2}}.....{}^{n}{{c}_{n}}$ then we need to use concept of differentiation. Hence observation is the key point of this question.
Another approach would be that we can take expansion of ${{\left( 1+x \right)}^{n}}\text{ or }{{\left( 1+x \right)}^{m}}$ and multiply it by ${{x}^{m}}\text{ or }{{x}^{n}}$ respectively, then integration the series from $-1\text{ to }0$ to get the required given series.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE