Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove that tan1(34)+tan1(35)tan1(819)=π4

Answer
VerifiedVerified
488.1k+ views
like imagedislike image
Hint: First expand the given expression in left hand side using the formula for expansion of tan1x+tan1y and tan1xtan1y now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.

Complete step by step answer:
Now considering the L.H.S
L.H.S = tan1(34)+tan1(35)tan1(819)
The first two terms are in the form of tan1x+tan1y
We know that
tan1x+tan1y=tan1(x+y1xy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting x=34, y=35
=tan1(34+351(34)(35))tan1(819)
=tan1(15+122020920)tan1(819)
=tan1(27201120)tan1(819)
=tan1(2711)tan1(819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form tan1xtan1y
We know that tan1xtan1y=tan1(xy1+xy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting the values of x and y in (2) we get,
=tan1((2711)(819)1+(2711)(819))
=tan1(51388209209+21620)
=tan1(425209425209)
=tan1(1)
= R.H.S

Note: Usage of the formulas (tan1x+tan1y) and (tan1xtan1y) should be done carefully to simplify the given question and application of the formulas in correct way is necessary.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹ per year
Select and buy