
Prove that $\tan 82{\dfrac{1}{2}^ \circ } = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
Answer
465.3k+ views
Hint: We will be making use of few trigonometric and algebraic identities to solve this problem.
Here in this question some trigonometric and algebraic identities must be known which are as mentioned below: -
1. $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
2. ${(a + b)^2} = {a^2} + {b^2} + 2ab$
3. Roots of quadratic equation can find out by sridharacharya formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
As we have to prove tangent trigonometric function the possible angles that
can be used are $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $ so we will
use $\tan {30^ \circ }$ so that we can get half angle relation.
$\tan 30 = \dfrac{1}{{\sqrt 3 }}$ ......................equation (1)
(With the help of equation (1) we will find out $\tan {15^ \circ }$ which we can also write as $\tan
7{\dfrac{1}{2}^ \circ }$ $ \Rightarrow \dfrac{{2\tan {{15}^ \circ }}}{{1 - {{\tan }^2}{{15}^ \circ }}} =
\dfrac{1}{{\sqrt 3 }}$ (Applying identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ where $A
= {15^ \circ }$ )
Let’s take $\tan {15^ \circ } = a$ so that we can make quadratic equation and find value of $\tan {15^
\circ }$ $ \Rightarrow \dfrac{{2a}}{{1 - {a^2}}} = \dfrac{1}{{\sqrt 3 }}$
Now cross multiplying
$ \Rightarrow 2\sqrt 3 a = 1 - {a^2}$
(Shifting terms so that we can form quadratic equation)
$ \Rightarrow {a^2} + 2\sqrt 3 a - 1 = 0$
Now applying sridharacharya formula to find roots of the equation $x = \dfrac{{ - b \pm \sqrt {{b^2}
- 4ac} }}{{2a}}$ where $a = 1,b = 2\sqrt 3 ,c = - 1$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{(2\sqrt 3 )}^2} - 4 \times 1 \times - 1} }}{{2 \times
1}}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {4 \times 3 + 4} }}{2}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {16} }}{2}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
Two roots will be there ${x_1} = \dfrac{{ - 2\sqrt 3 + 4}}{2},{x_2} = \dfrac{{ - 2\sqrt 3 - 4}}{2}$
\[ \Rightarrow {x_1} = 2 - \sqrt 3 ,{x_2} = - 2 - \sqrt 3 \]
We will take positive root because $\tan {15^ \circ } > 0$
$\therefore \tan {15^ \circ } = 2 - \sqrt 3 $
Now applying $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$identity again where A= $\tan
7{\dfrac{1}{2}^ \circ }$
$ \Rightarrow \dfrac{{2\tan 7{{\dfrac{1}{2}}^ \circ }}}{{1 - {{\tan }^2}7{{\dfrac{1}{2}}^ \circ }}} = 2 -
\sqrt 3 $
Let’s $\tan 7{\dfrac{1}{2}^ \circ } = b$ so that we can make quadratic equation and can solve with
less complexity. $ \Rightarrow \dfrac{{2b}}{{1 - {b^2}}} = 2 - \sqrt 3 $
Now cross multiplying
$ \Rightarrow 2b = (2 - \sqrt 3 )(1 - {b^2})$
$ \Rightarrow 2b = 2 - \sqrt 3 - {b^2}(2 - \sqrt 3 )$
\[ \Rightarrow {b^2}(2 - \sqrt 3 ) + 2b - (2 - \sqrt 3 ) = 0\]
Now applying sridharacharya formula to find roots of the equation $x = \dfrac{{ - b \pm \sqrt {{b^2}
- 4ac} }}{{2a}}$ where \[a = 2 - \sqrt 3 ,b = 2,c = - 2 + \sqrt 3 \]
\[ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 4{{(2 - \sqrt 3 )}^2}} }}{{2 \times (2 - \sqrt 3 )}}\] (Taking
positive root because $\tan 7{\dfrac{1}{2}^ \circ } > 0$ )
\[ \Rightarrow \dfrac{{ - 1 + \sqrt {8 - 4\sqrt 3 } }}{{(2 - \sqrt 3 )}}\] (Simplifying further)
$\therefore \tan 7{\dfrac{1}{2}^ \circ } = \dfrac{{\sqrt 6 - \sqrt 2 - 1}}{{2 - \sqrt 3 }}$
$\tan 82{\dfrac{1}{2}^ \circ } = \cot 7{\dfrac{1}{2}^ \circ } = (\dfrac{{2 - \sqrt 3 }}{{\sqrt 6 - \sqrt 2 -
1}})$
$ \Rightarrow \dfrac{{(2 - \sqrt 3 )}}{{(\sqrt 6 - (\sqrt 2 + 1))}}\dfrac{{(\sqrt 6 + \sqrt 2 + 1)}}{{(\sqrt6 + \sqrt 2 + 1)}}$ (Rationalising the denominator term)$
\Rightarrow \dfrac{{2\sqrt 6 -3\sqrt 2 + 2\sqrt 2 - \sqrt 6 + 2 - \sqrt 3 }}{{{{(\sqrt 6 - (\sqrt 2 + 1))}^2}}}$ (Multiplying numerator terms)
$ \Rightarrow \dfrac{{\sqrt 6 - \sqrt 2 + 2 - \sqrt 3 }}{{3 - 2\sqrt 2 }}$
$ \Rightarrow \dfrac{{(\sqrt 2 - 1)(\sqrt 3 + \sqrt 2 )}}{{{{(\sqrt 2 - 1)}^2}}}$
$ \Rightarrow \dfrac{{(\sqrt 3 + \sqrt 2 )}}{{(\sqrt 2 - 1)}}$
(Rationalising denominator term) $ \Rightarrow \dfrac{{(\sqrt 3 + \sqrt 2 )}}{{(\sqrt 2 - 1)}} \times\dfrac{{(\sqrt 2 + 1)}}{{(\sqrt 2 + 1)}} = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
$\therefore \tan 82{\dfrac{1}{2}^ \circ } = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
Hence it is proved that $\tan 82{\dfrac{1}{2}^ \circ } = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
Note: -Some students may find difficulty in converting $\tan 82{\dfrac{1}{2}^ \circ } = \cot7{\dfrac{1}{2}^ \circ }$ so below explanation of this conversion is mentioned so that students can avoid this mistake. $\tan 82{\dfrac{1}{2}^ \circ } = \tan ({90^ \circ } - 7{\dfrac{1}{2}^ \circ }) = \cot7{\dfrac{1}{2}^ \circ }$ (As cot is positive in the first quadrant)
All students must know signs of different trigonometric functions in all four quadrants so that
conversion of angle becomes easy with that knowledge. Below all signs quadrant wise are
mentioned: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec).Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot). Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec). Negative (sine, tan, cot, cosec)
Here in this question some trigonometric and algebraic identities must be known which are as mentioned below: -
1. $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
2. ${(a + b)^2} = {a^2} + {b^2} + 2ab$
3. Roots of quadratic equation can find out by sridharacharya formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
As we have to prove tangent trigonometric function the possible angles that
can be used are $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $ so we will
use $\tan {30^ \circ }$ so that we can get half angle relation.
$\tan 30 = \dfrac{1}{{\sqrt 3 }}$ ......................equation (1)
(With the help of equation (1) we will find out $\tan {15^ \circ }$ which we can also write as $\tan
7{\dfrac{1}{2}^ \circ }$ $ \Rightarrow \dfrac{{2\tan {{15}^ \circ }}}{{1 - {{\tan }^2}{{15}^ \circ }}} =
\dfrac{1}{{\sqrt 3 }}$ (Applying identity $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$ where $A
= {15^ \circ }$ )
Let’s take $\tan {15^ \circ } = a$ so that we can make quadratic equation and find value of $\tan {15^
\circ }$ $ \Rightarrow \dfrac{{2a}}{{1 - {a^2}}} = \dfrac{1}{{\sqrt 3 }}$
Now cross multiplying
$ \Rightarrow 2\sqrt 3 a = 1 - {a^2}$
(Shifting terms so that we can form quadratic equation)
$ \Rightarrow {a^2} + 2\sqrt 3 a - 1 = 0$
Now applying sridharacharya formula to find roots of the equation $x = \dfrac{{ - b \pm \sqrt {{b^2}
- 4ac} }}{{2a}}$ where $a = 1,b = 2\sqrt 3 ,c = - 1$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{(2\sqrt 3 )}^2} - 4 \times 1 \times - 1} }}{{2 \times
1}}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {4 \times 3 + 4} }}{2}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm \sqrt {16} }}{2}$
$ \Rightarrow x = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
Two roots will be there ${x_1} = \dfrac{{ - 2\sqrt 3 + 4}}{2},{x_2} = \dfrac{{ - 2\sqrt 3 - 4}}{2}$
\[ \Rightarrow {x_1} = 2 - \sqrt 3 ,{x_2} = - 2 - \sqrt 3 \]
We will take positive root because $\tan {15^ \circ } > 0$
$\therefore \tan {15^ \circ } = 2 - \sqrt 3 $
Now applying $\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$identity again where A= $\tan
7{\dfrac{1}{2}^ \circ }$
$ \Rightarrow \dfrac{{2\tan 7{{\dfrac{1}{2}}^ \circ }}}{{1 - {{\tan }^2}7{{\dfrac{1}{2}}^ \circ }}} = 2 -
\sqrt 3 $
Let’s $\tan 7{\dfrac{1}{2}^ \circ } = b$ so that we can make quadratic equation and can solve with
less complexity. $ \Rightarrow \dfrac{{2b}}{{1 - {b^2}}} = 2 - \sqrt 3 $
Now cross multiplying
$ \Rightarrow 2b = (2 - \sqrt 3 )(1 - {b^2})$
$ \Rightarrow 2b = 2 - \sqrt 3 - {b^2}(2 - \sqrt 3 )$
\[ \Rightarrow {b^2}(2 - \sqrt 3 ) + 2b - (2 - \sqrt 3 ) = 0\]
Now applying sridharacharya formula to find roots of the equation $x = \dfrac{{ - b \pm \sqrt {{b^2}
- 4ac} }}{{2a}}$ where \[a = 2 - \sqrt 3 ,b = 2,c = - 2 + \sqrt 3 \]
\[ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {4 + 4{{(2 - \sqrt 3 )}^2}} }}{{2 \times (2 - \sqrt 3 )}}\] (Taking
positive root because $\tan 7{\dfrac{1}{2}^ \circ } > 0$ )
\[ \Rightarrow \dfrac{{ - 1 + \sqrt {8 - 4\sqrt 3 } }}{{(2 - \sqrt 3 )}}\] (Simplifying further)
$\therefore \tan 7{\dfrac{1}{2}^ \circ } = \dfrac{{\sqrt 6 - \sqrt 2 - 1}}{{2 - \sqrt 3 }}$
$\tan 82{\dfrac{1}{2}^ \circ } = \cot 7{\dfrac{1}{2}^ \circ } = (\dfrac{{2 - \sqrt 3 }}{{\sqrt 6 - \sqrt 2 -
1}})$
$ \Rightarrow \dfrac{{(2 - \sqrt 3 )}}{{(\sqrt 6 - (\sqrt 2 + 1))}}\dfrac{{(\sqrt 6 + \sqrt 2 + 1)}}{{(\sqrt6 + \sqrt 2 + 1)}}$ (Rationalising the denominator term)$
\Rightarrow \dfrac{{2\sqrt 6 -3\sqrt 2 + 2\sqrt 2 - \sqrt 6 + 2 - \sqrt 3 }}{{{{(\sqrt 6 - (\sqrt 2 + 1))}^2}}}$ (Multiplying numerator terms)
$ \Rightarrow \dfrac{{\sqrt 6 - \sqrt 2 + 2 - \sqrt 3 }}{{3 - 2\sqrt 2 }}$
$ \Rightarrow \dfrac{{(\sqrt 2 - 1)(\sqrt 3 + \sqrt 2 )}}{{{{(\sqrt 2 - 1)}^2}}}$
$ \Rightarrow \dfrac{{(\sqrt 3 + \sqrt 2 )}}{{(\sqrt 2 - 1)}}$
(Rationalising denominator term) $ \Rightarrow \dfrac{{(\sqrt 3 + \sqrt 2 )}}{{(\sqrt 2 - 1)}} \times\dfrac{{(\sqrt 2 + 1)}}{{(\sqrt 2 + 1)}} = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
$\therefore \tan 82{\dfrac{1}{2}^ \circ } = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
Hence it is proved that $\tan 82{\dfrac{1}{2}^ \circ } = (\sqrt 3 + \sqrt 2 )(\sqrt 2 + 1)$
Note: -Some students may find difficulty in converting $\tan 82{\dfrac{1}{2}^ \circ } = \cot7{\dfrac{1}{2}^ \circ }$ so below explanation of this conversion is mentioned so that students can avoid this mistake. $\tan 82{\dfrac{1}{2}^ \circ } = \tan ({90^ \circ } - 7{\dfrac{1}{2}^ \circ }) = \cot7{\dfrac{1}{2}^ \circ }$ (As cot is positive in the first quadrant)
All students must know signs of different trigonometric functions in all four quadrants so that
conversion of angle becomes easy with that knowledge. Below all signs quadrant wise are
mentioned: -
First quadrant = All trigonometric functions are positive (sine, cosine, tan, sec, cosec, cot)
Second quadrant=Positive (sine, cosec).Negative (cosine, tan, sec, cot)
Third quadrant= Positive (tan, cot). Negative (sine, cosine, sec, cosec)
Fourth quadrant= Positive (cosine, sec). Negative (sine, tan, cot, cosec)
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Define peptide linkage class 12 chemistry CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between lanthanoids and actinoids class 12 chemistry CBSE

Phenol on treatment with conc HNO3 gives A Picric acid class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
