Answer
Verified
497.1k+ views
Hint: In permutations and combinations, we have a formula to calculate the number of circular permutations of ‘n’ different things on the garland. This number of permutations is equal to $\dfrac{1}{2}\left( n-1 \right)!$. Use this formula to solve this question. Also, since 4 particular flowers are never separated, solve this question by considering these 4 flowers as a single unit.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula that can be used to calculate the number of arrangements of n different things on the garland. The number of arrangements of n different things on the garland is equal to $\dfrac{1}{2}\left( n-1 \right)!...........\left( 1 \right)$.
Also, the number of ways in which n things can be arranged within themselves is equal to $n!............\left( 2 \right)$.
In this question, we are required to find the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated. Let us consider those 4 particular flowers as a single unit. If we consider these 4 particular flowers as a single unit, then we have to arrange 5 things (1 single unit of 4 particular flowers and other 4 flowers) instead of 8 things on the garland. Using formula $\left( 1 \right)$, the number of arrangements of these 5 elements is equal to $\dfrac{1}{2}\left( 5-1 \right)!=\dfrac{1}{2}4!............\left( 3 \right)$.
Since those 4 flowers that we had considered as a single unit were different from each other, so they can be arranged within themselves. Using formula $\left( 2 \right)$, the number of ways in which we can arrange these 4 flowers within themselves is equal to 4!$...........\left( 4 \right)$
Multiplying the numbers obtained in \[\left( 3 \right)\] and \[\left( 4 \right)\], the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is equal to $\dfrac{1}{2}4!4!$.
Hence proved.
Note: There is a possibility that one may forget to arrange the 4 particular flowers among themselves which we have considered as a single unit. But since those four flowers are different from each other, it is necessary to arrange them within themselves.
Complete step-by-step answer:
Before proceeding with the question, we must know all the formulas that will be required to solve this question.
In permutations and combinations, we have a formula that can be used to calculate the number of arrangements of n different things on the garland. The number of arrangements of n different things on the garland is equal to $\dfrac{1}{2}\left( n-1 \right)!...........\left( 1 \right)$.
Also, the number of ways in which n things can be arranged within themselves is equal to $n!............\left( 2 \right)$.
In this question, we are required to find the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated. Let us consider those 4 particular flowers as a single unit. If we consider these 4 particular flowers as a single unit, then we have to arrange 5 things (1 single unit of 4 particular flowers and other 4 flowers) instead of 8 things on the garland. Using formula $\left( 1 \right)$, the number of arrangements of these 5 elements is equal to $\dfrac{1}{2}\left( 5-1 \right)!=\dfrac{1}{2}4!............\left( 3 \right)$.
Since those 4 flowers that we had considered as a single unit were different from each other, so they can be arranged within themselves. Using formula $\left( 2 \right)$, the number of ways in which we can arrange these 4 flowers within themselves is equal to 4!$...........\left( 4 \right)$
Multiplying the numbers obtained in \[\left( 3 \right)\] and \[\left( 4 \right)\], the number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is equal to $\dfrac{1}{2}4!4!$.
Hence proved.
Note: There is a possibility that one may forget to arrange the 4 particular flowers among themselves which we have considered as a single unit. But since those four flowers are different from each other, it is necessary to arrange them within themselves.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE