Answer
Verified
441.3k+ views
Hint: Here in this question basic properties of isosceles triangle, right triangle and distance formula will get used.
Property of isosceles triangle: - Two sides and opposite angles corresponding to them of an isosceles triangle are equal in magnitude.
Right triangle: - A triangle in which one angle is 90 degrees is termed as right triangle. With the help of Pythagoras theorem we can prove it. Below is the formula of Pythagoras theorem.
In a triangle ABC three sides are there AB, BC and AC and B is 90 degree. So Pythagoras theorem states that ${(AB)^2} + {(BC)^2} = {(AC)^2}$
Distance formula: -We will use distance formula between the two points ${x_1},{y_1}$ and ${x_2},{y_2}$ that is mentioned below: -
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ d= distance between two points.
Complete step-by-step solution:
Let points given be named as A (0, 0), B (5, 5) and C (-5, 5)
To prove: -
For isosceles triangle two sides must be equal so required conditions to satisfied are AB=BC or BC=CA or CA=AB
For the right triangle Pythagoras theorem must get satisfied.
Proof: - First of all we will find length of AB, BC and AC
Points for AB are A (0, 0) and B (5, 5)
$ \Rightarrow AB = \sqrt {{{[5 - 0]}^2} + {{[5 - 0]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AB = \sqrt {{{[5]}^2} + {{[5]}^2}} $
$ \Rightarrow AB = \sqrt {25 + 25} $
\[ \Rightarrow AB = \sqrt {50} \] (Finding square root of 50)
$\therefore AB = 7.07$
Points for BC are B (5, 5) and C (-5, 5)
$ \Rightarrow BC = \sqrt {{{[ - 5 - 5]}^2} + {{[5 - 5]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow BC = \sqrt {{{[ - 10]}^2} + {{[0]}^2}} $
$ \Rightarrow BC = \sqrt {100} $ (Finding square root of 100)
\[\therefore BC = 10\]
Points for AC are A (0, 0) and C (-5, 5)
$ \Rightarrow AC = \sqrt {{{[ - 5 - 0]}^2} + {{[ - 5 - 0]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AC = \sqrt {{{[ - 5]}^2} + {{[ - 5]}^2}} $
$ \Rightarrow AC = \sqrt {25 + 25} $
$ \Rightarrow AC = \sqrt {50} $ (Finding square root of 50)
\[\therefore AC = 7.07\]
AB=AC=7.07
Therefore from the three conditions AB=BC or BC=CA or CA=AB one which AB=AC is satisfied so given vertices are of isosceles triangle.
Now for right angled triangle Pythagoras theorem must get satisfied
${(AB)^2} + {(BC)^2} = {(AC)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(10)^2} \ne {(\sqrt {50} )^2}$
$\therefore 50 + 100 \ne 50$
${(AB)^2} + {(AC)^2} = {(BC)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(\sqrt {50} )^2} = {(10)^2}$
$\therefore 50 + 50 = 100$
${(AC)^2} + {(BC)^2} = {(AB)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(10)^2} \ne {(\sqrt {50} )^2}$
$\therefore 50 + 100 \ne 50$
As one of the condition got satisfied i.e. ${(AB)^2} + {(AC)^2} = {(BC)^2}$ , therefore the given isosceles triangle is a right angled triangle.
Note: Students must well aware of all the properties of triangles so that they can prove these types of questions and they must apply distance formula carefully as the common mistake which is done by most of the students is that they get confused between subtraction sign instead of addition sign in distance formula
Property of isosceles triangle: - Two sides and opposite angles corresponding to them of an isosceles triangle are equal in magnitude.
Right triangle: - A triangle in which one angle is 90 degrees is termed as right triangle. With the help of Pythagoras theorem we can prove it. Below is the formula of Pythagoras theorem.
In a triangle ABC three sides are there AB, BC and AC and B is 90 degree. So Pythagoras theorem states that ${(AB)^2} + {(BC)^2} = {(AC)^2}$
Distance formula: -We will use distance formula between the two points ${x_1},{y_1}$ and ${x_2},{y_2}$ that is mentioned below: -
$d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ d= distance between two points.
Complete step-by-step solution:
Let points given be named as A (0, 0), B (5, 5) and C (-5, 5)
To prove: -
For isosceles triangle two sides must be equal so required conditions to satisfied are AB=BC or BC=CA or CA=AB
For the right triangle Pythagoras theorem must get satisfied.
Proof: - First of all we will find length of AB, BC and AC
Points for AB are A (0, 0) and B (5, 5)
$ \Rightarrow AB = \sqrt {{{[5 - 0]}^2} + {{[5 - 0]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AB = \sqrt {{{[5]}^2} + {{[5]}^2}} $
$ \Rightarrow AB = \sqrt {25 + 25} $
\[ \Rightarrow AB = \sqrt {50} \] (Finding square root of 50)
$\therefore AB = 7.07$
Points for BC are B (5, 5) and C (-5, 5)
$ \Rightarrow BC = \sqrt {{{[ - 5 - 5]}^2} + {{[5 - 5]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow BC = \sqrt {{{[ - 10]}^2} + {{[0]}^2}} $
$ \Rightarrow BC = \sqrt {100} $ (Finding square root of 100)
\[\therefore BC = 10\]
Points for AC are A (0, 0) and C (-5, 5)
$ \Rightarrow AC = \sqrt {{{[ - 5 - 0]}^2} + {{[ - 5 - 0]}^2}} $ (Putting values in distance formula $d = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $ )
$ \Rightarrow AC = \sqrt {{{[ - 5]}^2} + {{[ - 5]}^2}} $
$ \Rightarrow AC = \sqrt {25 + 25} $
$ \Rightarrow AC = \sqrt {50} $ (Finding square root of 50)
\[\therefore AC = 7.07\]
AB=AC=7.07
Therefore from the three conditions AB=BC or BC=CA or CA=AB one which AB=AC is satisfied so given vertices are of isosceles triangle.
Now for right angled triangle Pythagoras theorem must get satisfied
${(AB)^2} + {(BC)^2} = {(AC)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(10)^2} \ne {(\sqrt {50} )^2}$
$\therefore 50 + 100 \ne 50$
${(AB)^2} + {(AC)^2} = {(BC)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(\sqrt {50} )^2} = {(10)^2}$
$\therefore 50 + 50 = 100$
${(AC)^2} + {(BC)^2} = {(AB)^2}$
$ \Rightarrow {(\sqrt {50} )^2} + {(10)^2} \ne {(\sqrt {50} )^2}$
$\therefore 50 + 100 \ne 50$
As one of the condition got satisfied i.e. ${(AB)^2} + {(AC)^2} = {(BC)^2}$ , therefore the given isosceles triangle is a right angled triangle.
Note: Students must well aware of all the properties of triangles so that they can prove these types of questions and they must apply distance formula carefully as the common mistake which is done by most of the students is that they get confused between subtraction sign instead of addition sign in distance formula
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE