
Prove the following: $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Answer
614.4k+ views
Hint: To solve this question, we can convert every term of the left hand side or the LHS in sin and cos. We also know a few relations like, $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By using these relations, we can prove the required expression.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Complete step-by-step answer:
In this question, we have been asked to prove the expression, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $. To prove this expression, we will first consider the left hand side or the LHS, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }$. We know that $\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }$. So, we can substitute it in the LHS and then we can write LHS as, $=\dfrac{\dfrac{\sin 5\theta }{\cos 5\theta }+\dfrac{\sin 3\theta }{\cos 3\theta }}{\dfrac{\sin 5\theta }{\cos 5\theta }-\dfrac{\sin 3\theta }{\cos 3\theta }}$
Now, we will take the LCM in both the numerator and denominator. By doing that we get LHS as, $\begin{align}
& =\dfrac{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}}{\dfrac{\left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right)}{\left( \cos 5\theta \right)\left( \cos 3\theta \right)}} \\
& \Rightarrow \dfrac{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)+\left( \cos 5\theta \right)\left( \sin 3\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]}{\left[ \left( \sin 5\theta \right)\left( \cos 3\theta \right)-\left( \sin 3\theta \right)\left( \cos 5\theta \right) \right]\left[ \left( \cos 5\theta \right)\left( \cos 3\theta \right) \right]} \\
\end{align}$
We know that $\sin a\cos b+\cos a\sin b=\sin \left( a+b \right)$ and, $\sin a\cos b-\cos a\sin b=\sin \left( a-b \right)$. By applying that here in the above expression, we get the LHS as,
$\begin{align}
& =\dfrac{\sin \left( 5\theta +3\theta \right)}{\sin \left( 5\theta -3\theta \right)} \\
& =\dfrac{\sin 8\theta }{\sin 2\theta } \\
\end{align}$
We know that $\sin 2\alpha =2\sin \alpha \cos \alpha $. By applying that in the above expression, we get LHS as,
$\begin{align}
& =\dfrac{2\sin 4\theta \cos 4\theta }{2\sin \theta \cos \theta } \\
& =\dfrac{\sin 4\theta \cos 4\theta }{\sin \theta \cos \theta } \\
\end{align}$
We will again apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $=\dfrac{2\sin 2\theta \cos 2\theta \cos 4\theta }{\sin \theta \cos \theta }$
Once again, we will apply $\sin 2\alpha =2\sin \alpha \cos \alpha $ in the above expression and get the LHS as, $\begin{align}
& =\dfrac{2\left( 2\sin \cos \theta \right)\cos 2\theta \cos 4\theta }{\sin \theta \cos \theta } \\
& =4\cos 2\theta \cos 4\theta \\
\end{align}$
Which is equal to the right hand side or the RHS of the expression given in the question. Hence, we have proved the expression given in the question, that is, $\dfrac{\tan 5\theta +\tan 3\theta }{\tan 5\theta -\tan 3\theta }=4\cos 2\theta \cos 4\theta $.
Note: To solve this question we should know the relation, $\sin 2\alpha =2\sin \alpha \cos \alpha $, which is derived from using $\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y$, where $x=y=\alpha $. While solving this question, the students can make a mistake with the trigonometric functions, so the students must know the basic trigonometric functions and relations.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

