Prove the following expression \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Answer
Verified
510.9k+ views
Hint: We convert all trigonometric functions in the denominator into corresponding complementary trigonometric functions using the below formulae.
\[\cos \theta \text{ }=\sin \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
\[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
Complete step-by-step answer:
We have to prove the question \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Now, we will take left hand side i.e. \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Let \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] be equation 1.
Now we will simplify the denominators of equation 1 in the following way.
First we will convert \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \] using the formula \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] ,
after converting \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \],equation 1 becomes \[\dfrac{\sin {{70}^{o}}}{\sin {{70}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Now we will cancel equal terms in numerator and denominator, after cancelling common terms in numerator and denominator, equation 1 becomes
\[\Rightarrow 1+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 2.
Now we will convert a \[\sec 70{}^\circ \] to \[\csc 20{}^\circ \] using the formula \[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sec 70{}^\circ \] to \[\text{csc20 }\!\!{}^\circ\!\!\text{ }\] equation 2 becomes \[\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\sin {{70}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{csc2}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\] ,
now we will cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 2 becomes
\[\Rightarrow 1+1-2\cos {{70}^{o}}\csc {{20}^{o}}\]
\[\Rightarrow 2-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 3.
We know that \[\csc\theta \] and \[\sin \theta \] are mutual reciprocals, that means $\csc \theta =\dfrac{1}{\sin \theta }$ or $\sin \theta =\dfrac{1}{\csc \theta }$
Now we will convert a$\csc 20{}^\circ $ to $\dfrac{1}{\sin 20{}^\circ }$ and equation 3 becomes
$2-2\dfrac{\cos 70{}^\circ }{\sin 20{}^\circ }$ let it be equation 4.
Now we will convert \[\sin 20{}^\circ \] to $\cos 70{}^\circ $ using the formula \[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sin 20{}^\circ \] to $\cos 70{}^\circ $ equation 4 becomes $2-2\dfrac{\cos 70{}^\circ }{\cos 70{}^\circ }$ .
Now we cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 4 becomes
$\Rightarrow 2-2\times 1$
\[\Rightarrow 0\]
=RHS
LHS=RHS
Hence, the following expression \[\text{ }\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\] is proved.
So, \[\text{ }\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\text{cos2}{{\text{0}}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{sec7}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\text{=0}\]
Note: Sometimes we convert trigonometric functions of non-standard angles to corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\], such that this conversion will help us to simplify the trigonometric equations and then there will be a confusion in converting trigonometric functions into corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\] so, be perfect with this type of basic formulae here.
\[\cos \theta \text{ }=\sin \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
\[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\]
\[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\]
Complete step-by-step answer:
We have to prove the question \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\]
Now, we will take left hand side i.e. \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Let \[\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] be equation 1.
Now we will simplify the denominators of equation 1 in the following way.
First we will convert \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \] using the formula \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] ,
after converting \[\cos 20{}^\circ \] to \[\sin 70{}^\circ \],equation 1 becomes \[\dfrac{\sin {{70}^{o}}}{\sin {{70}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\]
Now we will cancel equal terms in numerator and denominator, after cancelling common terms in numerator and denominator, equation 1 becomes
\[\Rightarrow 1+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 2.
Now we will convert a \[\sec 70{}^\circ \] to \[\csc 20{}^\circ \] using the formula \[\csc \theta =\sec \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sec 70{}^\circ \] to \[\text{csc20 }\!\!{}^\circ\!\!\text{ }\] equation 2 becomes \[\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\sin {{70}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{csc2}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\] ,
now we will cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 2 becomes
\[\Rightarrow 1+1-2\cos {{70}^{o}}\csc {{20}^{o}}\]
\[\Rightarrow 2-2\cos {{70}^{o}}\csc {{20}^{o}}\] and let it be equation 3.
We know that \[\csc\theta \] and \[\sin \theta \] are mutual reciprocals, that means $\csc \theta =\dfrac{1}{\sin \theta }$ or $\sin \theta =\dfrac{1}{\csc \theta }$
Now we will convert a$\csc 20{}^\circ $ to $\dfrac{1}{\sin 20{}^\circ }$ and equation 3 becomes
$2-2\dfrac{\cos 70{}^\circ }{\sin 20{}^\circ }$ let it be equation 4.
Now we will convert \[\sin 20{}^\circ \] to $\cos 70{}^\circ $ using the formula \[\sin \theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] ,after converting
\[\sin 20{}^\circ \] to $\cos 70{}^\circ $ equation 4 becomes $2-2\dfrac{\cos 70{}^\circ }{\cos 70{}^\circ }$ .
Now we cancel common terms in numerator and denominator, after cancelling common terms in numerator and denominator equation 4 becomes
$\Rightarrow 2-2\times 1$
\[\Rightarrow 0\]
=RHS
LHS=RHS
Hence, the following expression \[\text{ }\dfrac{\sin {{70}^{o}}}{\cos {{20}^{o}}}+\dfrac{\csc {{20}^{o}}}{\sec {{70}^{o}}}-2\cos {{70}^{o}}\csc {{20}^{o}}=0\] is proved.
So, \[\text{ }\dfrac{\text{sin7}{{\text{0}}^{\text{o}}}}{\text{cos2}{{\text{0}}^{\text{o}}}}\text{+}\dfrac{\text{csc2}{{\text{0}}^{\text{o}}}}{\text{sec7}{{\text{0}}^{\text{o}}}}\text{-2cos7}{{\text{0}}^{\text{o}}}\text{csc2}{{\text{0}}^{\text{o}}}\text{=0}\]
Note: Sometimes we convert trigonometric functions of non-standard angles to corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\], such that this conversion will help us to simplify the trigonometric equations and then there will be a confusion in converting trigonometric functions into corresponding complementary trigonometric functions i.e. \[\cos \theta \] to \[\sin \left( \dfrac{\pi }{2}-\theta \right)\] so, be perfect with this type of basic formulae here.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE