Prove the following:
$\left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right|$
Answer
Verified
509.1k+ views
Hint: -Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Consider L.H.S
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right|\]
Take \[x,y,z\] common from column 1, column 2, and column 3 respectively.
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{ax}&{by}&{cz} \\
{{x^2}}&{{y^2}}&{{z^2}} \\
1&1&1
\end{array}} \right| = xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right|\]
Now multiply $xyz$ in the third row of the determinant.
\[ \Rightarrow xyz\left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{1}{x}}&{\frac{1}{y}}&{\frac{1}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{\frac{{xyz}}{x}}&{\frac{{xyz}}{y}}&{\frac{{xyz}}{z}}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
x&y&z \\
{yz}&{zx}&{xy}
\end{array}} \right| = {\text{R}}{\text{.H}}{\text{.S}}\]
Hence Proved.
Note: - In such types of questions first take \[x,y,z\] common from column 1, column 2, and column 3 respectively, then multiply $xyz$ in the third row of the determinant we will get the required result.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE