Prove the following relation.
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Answer
Verified
511.8k+ views
Hint: Separate the given determinant into two parts by splitting the middle column, that is, write \[{{a}^{2}},{{b}^{2}},{{c}^{2}}\] and \[{{\left( b-c \right)}^{2}},{{\left( c-a \right)}^{2}},{{\left( a-b \right)}^{2}}\] in different determinants. Then use operations \[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]and then proceed.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Here, we have to prove that
\[\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|=\left( b-c \right)\left( c-a \right)\left( a-b \right)\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\]
Let us consider the given determinant as,
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}}-{{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}}-{{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}}-{{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
Since, we know that
\[\left| \begin{matrix}
x & a-b & m \\
y & c-d & n \\
z & e-f & 0 \\
\end{matrix} \right|=\left| \begin{matrix}
x & a & m \\
y & c & n \\
z & e & 0 \\
\end{matrix} \right|-\left| \begin{matrix}
x & b & m \\
y & d & n \\
z & f & 0 \\
\end{matrix} \right|\]
Therefore, we can apply it to the determinant in the question, D as shown below.
\[D=\left| \begin{matrix}
{{a}^{2}} & {{a}^{2}} & bc \\
{{b}^{2}} & {{b}^{2}} & ca \\
{{c}^{2}} & {{c}^{2}} & ab \\
\end{matrix} \right|-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that if any two rows or any two columns of determinant is identical, then the value of determinant is zero.
Therefore, we get
\[D=0-\left| \begin{matrix}
{{a}^{2}} & {{\left( b-c \right)}^{2}} & bc \\
{{b}^{2}} & {{\left( c-a \right)}^{2}} & ca \\
{{c}^{2}} & {{\left( a-b \right)}^{2}} & ab \\
\end{matrix} \right|\]
We know that \[{{\left( x-y \right)}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\]
Therefore, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{2}}\to {{C}_{2}}+2{{C}_{3}}\]
We will get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}}-2bc+2bc & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}}-2ca+2ca & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}}-2ab+2ab & ab \\
\end{matrix} \right|\]
By cancelling like terms and simplifying, we get,
\[D=-\left| \begin{matrix}
{{a}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{C}_{1}}\to {{C}_{1}}+{{C}_{2}}\]
So, we will get
\[D=-\left| \begin{matrix}
{{a}^{2}}+{{b}^{2}}+{{c}^{2}} & {{b}^{2}}+{{c}^{2}} & bc \\
{{b}^{2}}+{{c}^{2}}+{{a}^{2}} & {{c}^{2}}+{{a}^{2}} & ca \\
{{c}^{2}}+{{a}^{2}}+{{b}^{2}} & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
By taking \[\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\] common from \[{{R}_{1}}\], we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1 & {{b}^{2}}+{{c}^{2}} & bc \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1 & {{a}^{2}}+{{b}^{2}} & ab \\
\end{matrix} \right|\]
Now, we will use the operation,
\[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\]
And, \[{{R}_{3}}\to {{R}_{3}}-{{R}_{2}}\]
We will get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
1-1 & \left( {{b}^{2}}+{{c}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & bc-ca \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
1-1 & \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{c}^{2}}+{{a}^{2}} \right) & ab-ca \\
\end{matrix} \right|\]
\[\Rightarrow D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & {{b}^{2}}-{{a}^{2}} & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & {{b}^{2}}-{{c}^{2}} & a\left( b-c \right) \\
\end{matrix} \right|\]
Since, we know that \[\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)\], we can apply it to the above determinant and we will get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left| \begin{matrix}
0 & \left( b-a \right)\left( b+a \right) & c\left( b-c \right) \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & \left( b-c \right)\left( b+c \right) & a\left( b-c \right) \\
\end{matrix} \right|\]
By taking \[\left( b-a \right)\] and \[\left( b-c \right)\] common from \[{{R}_{1}}\] and \[{{R}_{3}}\] respectively, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Let,
\[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\]
Therefore, we get
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right).\Delta ....\left( i \right)\]
We know that determinant value of
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-d\left( bi-hc \right)+g\left( bf-ec \right)\]
Therefore determinant value of \[\Delta =\left| \begin{matrix}
0 & b+a & c \\
1 & {{c}^{2}}+{{a}^{2}} & ca \\
0 & b+c & a \\
\end{matrix} \right|\] is
\[0\left[ \left( {{c}^{2}}+{{a}^{2}} \right)\left( a \right)-\left( ca \right)\left( b+c \right) \right]-1\left[ \left( b+a \right)\left( a \right)-\left( c \right)\left( b+c \right) \right]+0\left[ \left( b+a \right)\left( ca \right)-c\left( {{c}^{2}}+{{a}^{2}} \right) \right]\]
Therefore, we get
\[\Delta =0-\left[ \left( ab+{{a}^{2}} \right)-\left( cb+{{c}^{2}} \right) \right]+0\]
\[\Rightarrow \Delta ={{c}^{2}}+bc-ab-{{a}^{2}}\]
We know that
\[{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)\]
Therefore, we get
\[\Delta =\left( c-a \right)\left( c+a \right)+b\left( c-a \right)\]
By taking \[\left( c-a \right)\] common, we get
\[\Delta =\left( c-a \right)\left( c+a+b \right)\]
By putting the value of \[\Delta \] in equation (i), we get,
\[D=-\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( b-a \right)\left( b-c \right)\left( c-a \right)\left( c+a+b \right)\]
Or, \[D=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( a-b \right)\left( b-c \right)\left( c-a \right)\left( a+b+c \right)\]
Hence Proved.
Note: In these types of questions, always try to first take out the common terms which are the same as terms in RHS, then try to make the terms of each row or column equal to 0 to easily find the determinant value.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE