Answer
Verified
498k+ views
Hint: First of all, as we know that we can substitute \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\]. Then use the formula of \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\] and \[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}\].
The expression in the question to be proved is given as
\[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3\]
Let us consider the LHS of the given expression as below,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\sqrt{3}.\tan {{80}^{o}}\]
We can also write the above expression as
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{80}^{o}}\]
Now, we can know that \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\].
So, we get the above expression as,
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan \left( {{60}^{o}}-{{20}^{o}} \right).\tan \left( {{60}^{o}}+{{20}^{o}} \right)\]
Since, we know that
\[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}\]
And,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}\]
Therefore, by applying the above formulas, we get the above expression as
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\tan {{60}^{o}}-\tan {{20}^{o}}}{1+\tan {{60}^{o}}.\tan {{20}^{o}}} \right].\left[ \dfrac{\tan {{60}^{o}}+\tan {{20}^{o}}}{1-\tan {{60}^{o}}\tan {{20}^{o}}} \right]\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\sqrt{3}-\tan {{20}^{o}}}{1+\sqrt{3}.\tan {{20}^{o}}} \right].\left[ \dfrac{\sqrt{3}+\tan {{20}^{o}}}{1-\sqrt{3}\tan {{20}^{o}}} \right]\]
We can also write the above expression as,
\[A=\dfrac{\sqrt{3}\tan {{20}^{o}}.\left( \sqrt{3}-\tan {{20}^{o}} \right)\left( \sqrt{3}+\tan {{20}^{o}} \right)}{\left( 1-\sqrt{3}.\tan {{20}^{o}} \right)\left( 1+\sqrt{3}\tan {{20}^{o}} \right)}\]
Since we know that
\[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, by applying this formula in the above expression, we get,
\[A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \tan {{20}^{o}} \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}\tan {{20}^{o}} \right)}^{2}}} \right]\]
By simplifying the above equation, we get,
\[\Rightarrow A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{3-{{\tan }^{2}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Now, we will take \[\tan {{20}^{o}}\] inside the bracket
We get,
\[\Rightarrow A=\sqrt{3}\left[ \dfrac{3\tan {{20}^{o}}-{{\tan }^{3}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Since, we know that
\[\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }=\tan 3\theta \]
Therefore, by applying the above formula, we get,
\[A=\sqrt{3}\left[ \tan 3.\left( {{20}^{o}} \right) \right]\]
We can also write the above expression as
\[A=\sqrt{3}\left[ \tan {{60}^{o}} \right]\]
Since, we know that \[\tan {{60}^{o}}=\sqrt{3}\], therefore by putting the value of \[\tan {{60}^{o}}\] in the above expression we get,
\[A=\sqrt{3}.\sqrt{3}\]
Therefore, A = 3 = RHS
Hence, we proved that the value of \[\tan {{20}^{o}}\tan {{40}^{o}}\tan {{60}^{o}}\tan {{80}^{o}}=3\].
Note: Here by looking at the terms like \[\tan {{20}^{o}},\tan {{40}^{o}}\] and \[\tan {{60}^{o}}\], students often make this mistake of using formulas of double angles that is \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] which makes the solution lengthy and does not lead to the desired result.
The expression in the question to be proved is given as
\[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3\]
Let us consider the LHS of the given expression as below,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get,
\[A=\tan {{20}^{o}}.\tan {{40}^{o}}.\sqrt{3}.\tan {{80}^{o}}\]
We can also write the above expression as
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{80}^{o}}\]
Now, we can know that \[{{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right)\] and \[{{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right)\].
So, we get the above expression as,
\[A=\sqrt{3}.\tan {{20}^{o}}.\tan \left( {{60}^{o}}-{{20}^{o}} \right).\tan \left( {{60}^{o}}+{{20}^{o}} \right)\]
Since, we know that
\[\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}\]
And,
\[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}\]
Therefore, by applying the above formulas, we get the above expression as
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\tan {{60}^{o}}-\tan {{20}^{o}}}{1+\tan {{60}^{o}}.\tan {{20}^{o}}} \right].\left[ \dfrac{\tan {{60}^{o}}+\tan {{20}^{o}}}{1-\tan {{60}^{o}}\tan {{20}^{o}}} \right]\]
Since, we know that,
\[\tan {{60}^{o}}=\sqrt{3}\]
Therefore, by putting the value of \[\tan {{60}^{o}}\] in the above expression, we get
\[A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\sqrt{3}-\tan {{20}^{o}}}{1+\sqrt{3}.\tan {{20}^{o}}} \right].\left[ \dfrac{\sqrt{3}+\tan {{20}^{o}}}{1-\sqrt{3}\tan {{20}^{o}}} \right]\]
We can also write the above expression as,
\[A=\dfrac{\sqrt{3}\tan {{20}^{o}}.\left( \sqrt{3}-\tan {{20}^{o}} \right)\left( \sqrt{3}+\tan {{20}^{o}} \right)}{\left( 1-\sqrt{3}.\tan {{20}^{o}} \right)\left( 1+\sqrt{3}\tan {{20}^{o}} \right)}\]
Since we know that
\[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Therefore, by applying this formula in the above expression, we get,
\[A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \tan {{20}^{o}} \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}\tan {{20}^{o}} \right)}^{2}}} \right]\]
By simplifying the above equation, we get,
\[\Rightarrow A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{3-{{\tan }^{2}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Now, we will take \[\tan {{20}^{o}}\] inside the bracket
We get,
\[\Rightarrow A=\sqrt{3}\left[ \dfrac{3\tan {{20}^{o}}-{{\tan }^{3}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]\]
Since, we know that
\[\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }=\tan 3\theta \]
Therefore, by applying the above formula, we get,
\[A=\sqrt{3}\left[ \tan 3.\left( {{20}^{o}} \right) \right]\]
We can also write the above expression as
\[A=\sqrt{3}\left[ \tan {{60}^{o}} \right]\]
Since, we know that \[\tan {{60}^{o}}=\sqrt{3}\], therefore by putting the value of \[\tan {{60}^{o}}\] in the above expression we get,
\[A=\sqrt{3}.\sqrt{3}\]
Therefore, A = 3 = RHS
Hence, we proved that the value of \[\tan {{20}^{o}}\tan {{40}^{o}}\tan {{60}^{o}}\tan {{80}^{o}}=3\].
Note: Here by looking at the terms like \[\tan {{20}^{o}},\tan {{40}^{o}}\] and \[\tan {{60}^{o}}\], students often make this mistake of using formulas of double angles that is \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\] which makes the solution lengthy and does not lead to the desired result.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers