Answer
Verified
430.2k+ views
Hint:Start from the left hand side and multiply both numerator and denominator by \[cosec \theta + 1\]. Then use the trigonometric formula ${cosec ^2}\theta - {\cot ^2}\theta = 1$ to simplify it further and bring it in the form of the right hand side.
Complete step by step answer:According to the question, we have been given a trigonometric identity and we are asked to prove it.
The trigonometric identity is:
\[ \Rightarrow \dfrac{{cosec \theta - 1}}{{\cot \theta }} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}{\text{ }}.....{\text{(1)}}\]
We’ll start with the left hand side and apply trigonometric formulas to convert it in the form of right hand side.
So we have:
\[ \Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }}\]
If we multiply both numerator and denominator by \[cosec \theta + 1\], we’ll get:
\[
\Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }} \times \dfrac{{cosec \theta + 1}}{{cosec \theta + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{\left( {cosec \theta - 1} \right)\left( {cosec \theta + 1} \right)}}{{\cot \theta \left( {cosec \theta + 1} \right)}} \\
\]
We know an important algebraic formula as:
\[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Applying this formula in our trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{cosec }^2}\theta - 1}}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
Now, we have a trigonometric formula as given below:
$ \Rightarrow {cosec ^2}\theta - {\cot ^2}\theta = 1$
Separating terms in this formula, we have:
$ \Rightarrow {cosec ^2}\theta - 1 = {\cot ^2}\theta $
So putting this value of ${cosec ^2}\theta - 1$ in our above trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{\cot }^2}\theta }}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
On further simplification, \[\cot \theta \] will get cancel out from both numerator and denominator. Doing this we will get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}\]
Now comparing this final expression with the expression in equation (1), we can conclude that:
\[ \Rightarrow {\text{LHS}} = {\text{RHS}}\]
Therefore this is how we prove this identity.
Note:
In this problem, we can also start from the right hand side and simplify it to bring it in the form of the left hand side. The solution will still be correct conceptually.
Some of the widely used trigonometric formulas are:
(1) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
(2) ${\sec ^2}\theta - {\tan ^2}\theta = 1$
(3) ${cosec ^2}\theta - {\cot ^2}\theta = 1$
The last formula we have already used in the above problem.
Complete step by step answer:According to the question, we have been given a trigonometric identity and we are asked to prove it.
The trigonometric identity is:
\[ \Rightarrow \dfrac{{cosec \theta - 1}}{{\cot \theta }} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}{\text{ }}.....{\text{(1)}}\]
We’ll start with the left hand side and apply trigonometric formulas to convert it in the form of right hand side.
So we have:
\[ \Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }}\]
If we multiply both numerator and denominator by \[cosec \theta + 1\], we’ll get:
\[
\Rightarrow {\text{LHS}} = \dfrac{{cosec \theta - 1}}{{\cot \theta }} \times \dfrac{{cosec \theta + 1}}{{cosec \theta + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{\left( {cosec \theta - 1} \right)\left( {cosec \theta + 1} \right)}}{{\cot \theta \left( {cosec \theta + 1} \right)}} \\
\]
We know an important algebraic formula as:
\[ \Rightarrow \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Applying this formula in our trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{cosec }^2}\theta - 1}}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
Now, we have a trigonometric formula as given below:
$ \Rightarrow {cosec ^2}\theta - {\cot ^2}\theta = 1$
Separating terms in this formula, we have:
$ \Rightarrow {cosec ^2}\theta - 1 = {\cot ^2}\theta $
So putting this value of ${cosec ^2}\theta - 1$ in our above trigonometric expression, we’ll get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{{{\cot }^2}\theta }}{{\cot \theta \left( {cosec \theta + 1} \right)}}\]
On further simplification, \[\cot \theta \] will get cancel out from both numerator and denominator. Doing this we will get:
\[ \Rightarrow {\text{LHS}} = \dfrac{{\cot \theta }}{{cosec \theta + 1}}\]
Now comparing this final expression with the expression in equation (1), we can conclude that:
\[ \Rightarrow {\text{LHS}} = {\text{RHS}}\]
Therefore this is how we prove this identity.
Note:
In this problem, we can also start from the right hand side and simplify it to bring it in the form of the left hand side. The solution will still be correct conceptually.
Some of the widely used trigonometric formulas are:
(1) ${\sin ^2}\theta + {\cos ^2}\theta = 1$
(2) ${\sec ^2}\theta - {\tan ^2}\theta = 1$
(3) ${cosec ^2}\theta - {\cot ^2}\theta = 1$
The last formula we have already used in the above problem.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE