Answer
Verified
406.8k+ views
Hint: In this problem, we have to prove the Parallelogram Law of vectors mathematically. we should know that the Parallelogram law states that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals. We can take the left-hand side of the given and expand it using the algebraic whole square formula, to prove for the right-hand side.
Complete step-by-step answer:
Here we have to prove the Parallelogram Law of vectors mathematically.
We know that Parallelogram law states that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals.
The given parallelogram law of addition to be proved is,
\[{{\left| a+b \right|}^{2}}+{{\left| a-b \right|}^{2}}=2{{\left| a \right|}^{2}}+2{{\left| b \right|}^{2}}\]
We can now take the left-hand side and expand it using the algebraic whole square formula
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}\]
We can take the Left-hand side,
LHS = \[{{\left| a+b \right|}^{2}}+{{\left| a-b \right|}^{2}}\]
We can now expand it using the above formulas, we get
LHS = \[\left[ {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+2\left| a \right|\left| b \right| \right]+\left[ {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}-2\left| a \right|\left| b \right| \right]\]
We can now simplify the above step, by cancelling the similar terms with opposite side, we get
LHS = \[{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}\]
We can now add the similar terms, we get
LHS = \[2{{\left| a \right|}^{2}}+2{{\left| b \right|}^{2}}\]
LHS = RHS
Hence proved.
Note: We should always remember the definition for the law of parallelogram, as Parallelogram law states that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals. We should also remember the algebraic whole square formula, to prove these types of problems.
Complete step-by-step answer:
Here we have to prove the Parallelogram Law of vectors mathematically.
We know that Parallelogram law states that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals.
The given parallelogram law of addition to be proved is,
\[{{\left| a+b \right|}^{2}}+{{\left| a-b \right|}^{2}}=2{{\left| a \right|}^{2}}+2{{\left| b \right|}^{2}}\]
We can now take the left-hand side and expand it using the algebraic whole square formula
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}\]
We can take the Left-hand side,
LHS = \[{{\left| a+b \right|}^{2}}+{{\left| a-b \right|}^{2}}\]
We can now expand it using the above formulas, we get
LHS = \[\left[ {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+2\left| a \right|\left| b \right| \right]+\left[ {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}-2\left| a \right|\left| b \right| \right]\]
We can now simplify the above step, by cancelling the similar terms with opposite side, we get
LHS = \[{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}\]
We can now add the similar terms, we get
LHS = \[2{{\left| a \right|}^{2}}+2{{\left| b \right|}^{2}}\]
LHS = RHS
Hence proved.
Note: We should always remember the definition for the law of parallelogram, as Parallelogram law states that the sum of the squares of the length of the four sides of a parallelogram is equal to the sum of the squares of the length of the two diagonals. We should also remember the algebraic whole square formula, to prove these types of problems.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths