Answer
Verified
432.6k+ views
Hint:
Here, we will use the definition of the Eigenvalue for a matrix. Then we will use the given matrix and multiply an Eigenvector. Then we will substitute the Eigen value to simplify the equation. We will use the condition of linearity and Identity to prove the statement.
Formula Used:
We will use the following Properties:
1) Linearity Property: \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\]
2) Identity Property: \[AI = A = IA\]
Complete step by step solution:
We are given that \[\lambda \] is an Eigenvalue of the\[n \times n\]matrix\[A\].
We know that by definition, if \[A\nu = \lambda \nu \] for \[\nu \ne 0\], we say that \[\lambda \] is the Eigenvalue for \[\nu \] and \[\nu \] is an Eigenvector for \[\lambda \].
\[A\nu = \lambda \nu \] ……………………………………………………\[\left( 1 \right)\]
Now, we will prove that \[\lambda + \mu \] is an Eigenvalue of the given matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Now, let us consider the given matrix
\[M = A + \mu I\]
By multiplying the Eigenvector \[\nu \] on both the sides of the given matrix, we get
\[ \Rightarrow M\nu = \left( {A + \mu I} \right)\nu \]
Using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = A\nu + \mu I\nu \]
Now, it is given that \[I\] is the \[n \times n\] unit matrix, so by using the identity property \[AI = A = IA\], we get
\[ \Rightarrow M\nu = A\nu + \mu \nu \]
Now, by using the equation \[\left( 1 \right)\], we get
\[ \Rightarrow M\nu = \lambda \nu + \mu \nu \]
Again by using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = \left( {\lambda + \mu } \right)\nu \]
So, \[\lambda + \mu \] is an Eigenvalue of the matrix \[M\] and \[\nu \] is the corresponding Eigenvector of the matrix \[M\] for the Eigenvalue \[\lambda + \mu \] .
Theorem: Let \[A\] be an \[n \times n\] matrix and \[\lambda \] an Eigenvalue of \[A\]. Then \[\lambda + \mu \] is an Eigenvalue of the matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Hence proved.
Note:
We know that an Eigenvector of a matrix is a non-zero vector in \[{{\bf{R}}^n}\] such that \[A\nu = \lambda \nu \] for some scalar\[\lambda \]. An Eigenvalue of a matrix is a scalar \[\lambda \] such that \[A\nu = \lambda \nu \] has a non-trivial solution. We should note that an Eigenvector and an Eigenvalue are found only for square matrices. Also, an Eigenvector is always non-zero but Eigenvalues may be equal to zero. A square matrix is defined as a matrix where the number of rows is equal to the number of columns.
Here, we will use the definition of the Eigenvalue for a matrix. Then we will use the given matrix and multiply an Eigenvector. Then we will substitute the Eigen value to simplify the equation. We will use the condition of linearity and Identity to prove the statement.
Formula Used:
We will use the following Properties:
1) Linearity Property: \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\]
2) Identity Property: \[AI = A = IA\]
Complete step by step solution:
We are given that \[\lambda \] is an Eigenvalue of the\[n \times n\]matrix\[A\].
We know that by definition, if \[A\nu = \lambda \nu \] for \[\nu \ne 0\], we say that \[\lambda \] is the Eigenvalue for \[\nu \] and \[\nu \] is an Eigenvector for \[\lambda \].
\[A\nu = \lambda \nu \] ……………………………………………………\[\left( 1 \right)\]
Now, we will prove that \[\lambda + \mu \] is an Eigenvalue of the given matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Now, let us consider the given matrix
\[M = A + \mu I\]
By multiplying the Eigenvector \[\nu \] on both the sides of the given matrix, we get
\[ \Rightarrow M\nu = \left( {A + \mu I} \right)\nu \]
Using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = A\nu + \mu I\nu \]
Now, it is given that \[I\] is the \[n \times n\] unit matrix, so by using the identity property \[AI = A = IA\], we get
\[ \Rightarrow M\nu = A\nu + \mu \nu \]
Now, by using the equation \[\left( 1 \right)\], we get
\[ \Rightarrow M\nu = \lambda \nu + \mu \nu \]
Again by using the Linearity Property \[f\left( {ax + by} \right) = af\left( x \right) + bf\left( y \right)\], we get
\[ \Rightarrow M\nu = \left( {\lambda + \mu } \right)\nu \]
So, \[\lambda + \mu \] is an Eigenvalue of the matrix \[M\] and \[\nu \] is the corresponding Eigenvector of the matrix \[M\] for the Eigenvalue \[\lambda + \mu \] .
Theorem: Let \[A\] be an \[n \times n\] matrix and \[\lambda \] an Eigenvalue of \[A\]. Then \[\lambda + \mu \] is an Eigenvalue of the matrix \[M = A + \mu I\] where \[I\] is the \[n \times n\] unit matrix.
Hence proved.
Note:
We know that an Eigenvector of a matrix is a non-zero vector in \[{{\bf{R}}^n}\] such that \[A\nu = \lambda \nu \] for some scalar\[\lambda \]. An Eigenvalue of a matrix is a scalar \[\lambda \] such that \[A\nu = \lambda \nu \] has a non-trivial solution. We should note that an Eigenvector and an Eigenvalue are found only for square matrices. Also, an Eigenvector is always non-zero but Eigenvalues may be equal to zero. A square matrix is defined as a matrix where the number of rows is equal to the number of columns.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE