What is the Q factor of an LR circuit?
(A) $ \dfrac{1}{R} $
(B) $ \dfrac{{{X_L}}}{R} $
(C) 1
(D) 0
Answer
Verified
448.8k+ views
Hint: The Q factor of the LR circuit is inversely proportional to resistance and is directly proportional to inductive reactance.
Complete step by step solution
The quality factor or Q factor of an LR circuit at the operating frequency $ \omega $ is defined as the ratio of reactance $ \nu F $ of the coil to the resistance.
We can use the above definition to write the formula of the Q factor of the LR circuit.
$ Q = \dfrac{{\omega L}}{R} = \dfrac{{{X_L}}}{R} $
Where $ {X_L} $ is the inductive reactance of the coil and $ R $ is the resistance.
This implies that option B is correct.
Additional information
Inductive reactance, which is also known by the symbol, $ {X_L} $ , is the property in an AC circuit that opposes the change in the current.
We can write an equation for inductive reactance which would be as follows.
$ {X_L} = 2\pi fL $
Where f is the frequency and L is the inductance of the coil and we can further write $ 2\pi f $ as $ \omega $
Then, the equation can be written in a simpler form as
$ {X_L} = \omega L $
Where $ \omega $ is the angular velocity.
The Q factor is a unitless and dimensionless quantity.
Note
The more resistance there will be, the less will be the value of the Q factor. We can also say that as inductive reactance is frequency-dependent, at DC, an inductor will have zero reactance, and therefore the Q factor will have to be zero, and at high frequencies, an inductor has an infinite reactance
Complete step by step solution
The quality factor or Q factor of an LR circuit at the operating frequency $ \omega $ is defined as the ratio of reactance $ \nu F $ of the coil to the resistance.
We can use the above definition to write the formula of the Q factor of the LR circuit.
$ Q = \dfrac{{\omega L}}{R} = \dfrac{{{X_L}}}{R} $
Where $ {X_L} $ is the inductive reactance of the coil and $ R $ is the resistance.
This implies that option B is correct.
Additional information
Inductive reactance, which is also known by the symbol, $ {X_L} $ , is the property in an AC circuit that opposes the change in the current.
We can write an equation for inductive reactance which would be as follows.
$ {X_L} = 2\pi fL $
Where f is the frequency and L is the inductance of the coil and we can further write $ 2\pi f $ as $ \omega $
Then, the equation can be written in a simpler form as
$ {X_L} = \omega L $
Where $ \omega $ is the angular velocity.
The Q factor is a unitless and dimensionless quantity.
Note
The more resistance there will be, the less will be the value of the Q factor. We can also say that as inductive reactance is frequency-dependent, at DC, an inductor will have zero reactance, and therefore the Q factor will have to be zero, and at high frequencies, an inductor has an infinite reactance
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE